4.6 Article

Hybrid Q-switched laser with MoS2 saturable absorber and AOM driven sub-nanosecond KTP-OPO

Journal

OPTICS EXPRESS
Volume 25, Issue 4, Pages 4227-4238

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.25.004227

Keywords

-

Categories

Funding

  1. National Natural Science Foundation of China [61378022, 61475088]
  2. Young Scholars Program of Shandong University [2015WLJH38]

Ask authors/readers for more resources

Two-dimensional (2D) materials, especially transition-metal dichalcogenides, such as molybdenum disulfide (MoS2) and tungsten disulfide (WS2), have attracted great interests due to their exceptional optical properties as saturable absorbers in laser systems. In this work, at first, we presented a diode-pumped passively Q-switched laser with MoS2 saturable absorber (MoS2-SA). At an incident pump power of 6.54 W, a maximum output power of 1.15 W with a minimum pulse duration of 70.6 ns was obtained, which is the shortest pulse duration of diode pumped passively Q-switched laser with MoS2-SA to the best of our knowledge. Then, by using a hybrid Q-switched laser with a MoS2-SA and an acousto-optic modulator (AOM) as pumping fundamental laser, a sub-nanosecond KTiOPO4 (KTP) based intracavity optical parametric oscillation (IOPO) was realized. With an incident pump power of 10.2 W and AOM repetition rate of 10 kHz, the maximum output power of 183 mW with minimum pulse duration of 850 ps was obtained. The experimental results indicate that the IOPO pumped by the hybrid Q-switched laser with AOM and MoS2-SA can generate signal wave with shorter pulse duration than those IOPOs pumped by hybrid Q-switched laser with AOM and Cr4+: YAG or single-walled carbon nanotube saturable absober (SWCNT-SA) or monolayer graphene SA. (C) 2017 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available