4.6 Article

Titanium dioxide nanotube arrays with silane coupling agent modification for heavy metal reduction and persistent organic pollutant degradation

Journal

NEW JOURNAL OF CHEMISTRY
Volume 41, Issue 11, Pages 4377-4389

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6nj03196j

Keywords

-

Funding

  1. National Natural Science Foundation of China [51378190, 51521006, 51579098, 51278176]
  2. National Program for Support of Top-Notch Young Professionals of China
  3. Program for Changjiang Scholars and Innovative Research Team in University [IRT-13R17]

Ask authors/readers for more resources

Among the technologies for removal of deposited heavy metals and degradation of persistent organic pollutants, TiO2 semiconductor catalysts have gained extensive attention owing to their excellent catalytic ability, relatively stable physical and chemical properties and competitive price. But there are still some drawbacks associated with these TiO2 semiconductor catalyst materials such as their weak adsorption and photocatalytic abilities in managing the organic pollutants and difficulties in recycling the TiO2 powder (P25). Therefore, a new class of TiO2 nanotube (TiO2-NT) arrays was synthesized using the silane coupling agent KH570 as a modifier and applied in the reduction of heavy metals, and degradation of phenol and persistent organic pollutants like Poly Brominated Diphenyl Ethers (PBDEs). The products were thoroughly characterized by SEM, TEM, DTG, AFM, BET, EDS, DRS and XRD, which confirmed that the surface of TiO2 was well modified by KH570. From the degradation experiment of phenol and BDE47, along with the heavy metal reduction experiment we can see that the catalytic efficiency (2 h) of the modified catalyst was 5%, 15% and 3-20% higher than that of the unmodified catalyst, respectively. As a kind of hole scavenger on the surface of catalysts, the modified TiO2 nanotube arrays could not only enhance the adsorption effect of catalysts on organic pollutants, but also increase the electronic separation efficiency of holes. The results also indicated that this new class of catalyst had advantages both in surface modification and materials recycling, providing a new direction in environment pollution control.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Physical

Phosphorus and kalium co-doped g-C3N4 with multiple-locus synergies to degrade atrazine: Insights into the depth analysis of the generation and role of singlet oxygen

Yaocheng Deng, Zhanpeng Zhou, Hao Zeng, Rongdi Tang, Ling Li, Jiajia Wang, Chengyang Feng, Daoxin Gong, Lin Tang, Ying Huang

Summary: In this study, phosphorus and kalium co-doped g-C3N4 with cyano and nitrogen vacancies (PKCN) was prepared via a simple thermal treatment. The prepared PKCN exhibited excellent singlet oxygen generation ability and efficiently degraded atrazine under visible light. Density functional theory calculations revealed the synergistic effect of different active units in efficient singlet oxygen generation. Additionally, the photocatalytic process significantly reduced the toxicity of atrazine.

APPLIED CATALYSIS B-ENVIRONMENTAL (2023)

Article Biophysics

3D printed bionic self-powered sensing device based on fern-shaped nitrogen doped BiVO4 photoanode with enriched oxygen vacancies

Xilian Ouyang, Chengyang Feng, Xu Zhu, Yibo Liao, Zheping Zhou, Xinya Fan, Ziling Zhang, Li Chen, Lin Tang

Summary: A portable 3D printed bionic sensing device with enhanced photoelectric response was fabricated for sensitive detection of Bisphenol A (BPA). The device utilized a dual-electrode system and a fern-shaped nitrogen doped BiVO4 photoanode to generate electrical output and provide the sensing signal. Integrated into a micromodel based on micro-nano 3D printing technology, the device achieved automatic sample injection and detection, paving a new way for the development of portable and on-site sensing devices.

BIOSENSORS & BIOELECTRONICS (2023)

Article Engineering, Environmental

Thin-walled vesicular Triazole-CN-PDI with electronic n?p* excitation and directional movement for enhanced atrazine photodegradation

Rongdi Tang, Hao Zeng, Daoxin Gong, Yaocheng Deng, Sheng Xiong, Ling Li, Zhanpeng Zhou, Jiajia Wang, Chengyang Feng, Lin Tang

Summary: In this study, triazole and pyromellitic diimide were used to modify polymeric carbon nitride (PCN) and fabricate TA-CN-PDI, a catalyst that promotes the photodegradation of atrazine. The vesicular morphology and the donor-pi-acceptor electronic structure synergistically enhance the photoactivity of the catalyst.

CHEMICAL ENGINEERING JOURNAL (2023)

Review Engineering, Environmental

Disinfection byproducts formation from emerging organic micropollutants during chlorine-based disinfection processes

Binbin Shao, Leyuan Shen, Zhifeng Liu, Lin Tang, Xiaofei Tan, Dongbo Wang, Weimin Zeng, Ting Wu, Yuan Pan, Xiansheng Zhang, Lin Ge, Miao He

Summary: This review discusses the formation of disinfection byproducts (DBPs) from emerging organic micropollutants (EOMPs) during chlorine-based disinfection processes (Cl-DPs). The typical Cl-DPs and their mechanisms are introduced, and the formation pathways, mechanisms, and influencing factors of DBPs in the presence of different EOMPs are discussed. The review also summarizes and discusses the detection and control methods of DBPs, and proposes future research directions and challenges in controlling their formation during disinfection processes.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Engineering, Environmental

Adjusting charge kinetics of conjugated polymers via integration of LSPR effect with homojunction

Mingjuan Zhang, Lin Tang, Abing Duan, Yi Zhang, Fengjiao Xiao, Yuan Zhu, Jiajia Wang, Chengyang Feng, Nian Yin

Summary: This study investigates the adjustment of charge kinetics in semiconductors using the integration of LSPR effect with homojunction. A novel composite material is designed for this purpose. The results indicate the potential application value of this approach in adjusting charge kinetics and enhance the understanding of thermodynamic reactions.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Engineering, Environmental

An S-scheme CdS/K2Ta2O6 heterojunction photocatalyst for production of H2O2 from water and air

Cui Lai, Mengyi Xu, Fuhang Xu, Bisheng Li, Dengsheng Ma, Yixia Li, Ling Li, Mingming Zhang, Danlian Huang, Lin Tang, Shiyu Liu, Huchuan Yan, Xuerong Zhou, Yukui Fu, Huan Yi

Summary: The production of hydrogen peroxide using solar energy is important for the chemical industry and environmental remediation. Researchers have successfully designed an S-scheme heterojunction photocatalyst with promoted charge separation and migration, achieving outstanding hydrogen peroxide production rate without sacrificial agents and additional oxygen. Experimental and theoretical studies suggest that the S-scheme heterojunction between CdS and KTO plays a crucial role in efficiently separating photogenerated electron-hole pairs, providing insights for the charge transfer mechanism and offering an innovative strategy for green, energy-saving, and sustainable hydrogen peroxide production.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Chemistry, Multidisciplinary

Highly efficient detection of ciprofloxacin with a self-powered sensing device based on a Au NPs/g-C3N4 micron tube and a 3D Ni-doped ZnIn2S4 thin film

Xilian Ouyang, Chengyang Feng, Xu Zhu, Yibo Liao, Xinya Fan, Zheping Zhou, Ziling Zhang, Lin Tang

Summary: Ciprofloxacin (CIP) is a widely used antibiotic that can enter the water environment and food chain, causing serious harm to human health and the ecological environment. This study presents a self-powered sensing device based on a photoelectrochemical system and 3D printing technology, which can detect CIP efficiently without an external power source.

ENVIRONMENTAL SCIENCE-NANO (2023)

Correction Ecology

Lysogenic bacteriophages encoding arsenic resistance determinants promote bacterial community adaptation to arsenic toxicity (May 2023, 10.1038/s41396-023-01425-w)

Xiang Tang, Linrui Zhong, Lin Tang, Changzheng Fan, Baowei Zhang, Mier Wang, Haoran Dong, Chengyun Zhou, Christopher Rensing, Shungui Zhou, Guangming Zeng

ISME JOURNAL (2023)

Article Green & Sustainable Science & Technology

Catalytic thermal degradation of tetracycline based on iron-based MOFs and annealed derivative in dark condition

Hui Chen, Tao Cai, Wanyue Dong, Jiajia Wang, Yutang Liu, Wenlu Li, Xinxian Xia, Lin Tang

Summary: Excessive use of tetracycline in livestock farming has caused serious pollution. A new method proposed the catalytic thermal degradation of tetracycline using iron-based metal-organic frameworks (MOFs) and studied the mechanism. The annealing derivatives of three Fe-based MOFs showed better degradation performance than the raw materials due to the exposure of Fe-O clusters and the formation of oxygen vacancies. The optimum sample exhibited a degradation efficiency of 94.22% for tetracycline within 60 minutes at 70 degrees C.

JOURNAL OF CLEANER PRODUCTION (2023)

Article Environmental Sciences

Simultaneous Recovery of NH3-N and Removal of Heavy Metals from Manganese Residue Leachate Using an Electrodialysis System

Yuyang Yi, Haopeng Feng, Jiajia Wang, Jing Tang, Yangfeng Wu, Xiangmin Liang, Yuyao Guo, Lin Tang

Summary: In this study, a novel electrodialysis system with a self-growing titanium dioxide nanowire (TiO2 NW) electrode is proposed to recover NH3-N and remove heavy metals from manganese residue leachate (MRL), which can seriously affect the environment. Plant growth experiments and ecotoxicity studies are conducted to evaluate the ecological risks of the reuse of recovered NH3-N. The results show that the electrodialysis system can achieve high removal rates of heavy metals and recovery of NH3-N from MRL, and the recovered NH3-N can promote plant growth and optimize soil fertility.

ACS ES&T WATER (2023)

Article Multidisciplinary Sciences

Twistedly hydrophobic basis with suitable aromatic metrics in covalent organic networks govern micropollutant decontamination

Chencheng Qin, Yi Yang, Xiaodong Wu, Long Chen, Zhaoli Liu, Lin Tang, Lai Lyu, Danlian Huang, Dongbo Wang, Chang Zhang, Xingzhong Yuan, Wen Liu, Hou Wang

Summary: The pre-designable structure and unique architectures of covalent organic frameworks (COFs) make them attractive as active and porous medium for water crisis. However, the regulation of interfacial behavior in advanced oxidation decontamination using functional basis with different metrics remains challenging. In this study, different molecular interfaces were pre-designed and fabricated to achieve high removal rates for micropollutants by breaking through the adsorption energy barrier and promoting inner-surface renewal.

NATURE COMMUNICATIONS (2023)

Article Environmental Sciences

Floatable 3D Sponge@SBC-Induced Dual-Pathway-Activated Persulfate for Microcystis aeruginosa Inactivation

Lifei Deng, Yu Chen, Jiangfang Yu, Jie Yuan, Qili Peng, Yuyang Yi, Nile Wu, Lin Tang

Summary: Harmful algal blooms have become a global environmental problem. The synthesis of a novel floatable 3D sponge@SBC composite using biochar has shown excellent mechanical stability and catalytic performance in controlling algal blooms. The material also exhibits good repeatability in removing algae.

ACS ES&T WATER (2023)

Review Environmental Sciences

Recent advances in application of heterogeneous electro-Fenton catalysts for degrading organic contaminants in water

Wenjing Chen, Danlian Huang, Cui Lai, Yukui Fu, Wenfang Chen, Haoyang Ye, Huan Yi, Bisheng Li, Ling Li, Fanzhi Qin, Hong Qin, Lei Qin

Summary: Advanced oxidation processes (AOPs), especially the heterogeneous electro-Fenton (EF) process, have been widely used for surface and groundwater pollution control. EF process has shown high catalytic performance, no generation of iron sludge, and good recyclability of catalyst. This review focuses on the current studies and applications of heterogeneous catalysts in EF process, with emphasis on the period from 2012 to 2022. The review covers two typical heterogeneous EF systems (solid catalysts and functionalized cathode catalysts) and their applications in organic contaminants degradation in water.

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH (2023)

Article Environmental Sciences

Effects of Heterogeneous Metals on the Generation of Persistent Free Radicals as Critical Redox Sites in Iron-Containing Biochar for Persulfate Activation

Cheng Huang, Fanzhi Qin, Chen Zhang, Danlian Huang, Lin Tang, Biao Song, Ming Yan, Wenjun Wang, Deyu Qin, Yin Zhou, Hanzhuo Luo, Guoge Fang

Summary: Metal components have significant impacts on the generation of persistent free radicals (PFRs) in biochar. This study investigates the effect of interactions among metal components on the formation of PFRs during biomass pyrolysis. The results show that the coupling of Fe with Co and Ni increases the abundance of PFRs in iron-containing biochars (IBCs), while Zn inhibits PFRs generation. Persulfate activation experiments confirm that PFRs are critical redox sites. NiFeO/BC is identified as a more efficient catalyst for PFRs activation. This study provides new methods for regulating PFRs in biochar and advances the understanding of metal-containing biomass pyrolysis processes.

ACS ES&T WATER (2023)

Article Chemistry, Multidisciplinary

Two biomass material-derived self-doped (N/O) porous carbons from waste coriander and lilac with high specific surface areas and high capacitance for supercapacitors

Zihan Ma, Lishuang Wang, Tingting Chen, Guangning Wang

Summary: In this study, two kinds of 3D self-doped (N/O) lilac-based and coriander-based porous carbons with high performance have been prepared.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Nitrate anions embedded in rigid and cationic 3D energetic MOFs constructed by the chelating ligand towards insensitive energetic materials

Qin Wang, Yun-Fan Yan, Jiao-Lin Weng, Ying Huang, Fu Yang, Hao-Hui Xie, Fei Tan, Fa-Kun Zheng, Jian-Gang Xu

Summary: Balancing energy and mechanical sensitivities is a challenging issue in the field of energetic materials. This study constructed a 3D energetic metal-organic framework with nitrogen-rich ligand and NO3- anions. The framework demonstrated high stability, energy density, and excellent mechanical sensitivities, making it a potential insensitive energetic material.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Mangifera indica stone-assisted layered double hydroxide biocomposites: efficient contenders for reactive dye adsorption from aqueous sources

Marrium Saeed, Urooj Kamran, Amina Khan, Md Irfanul Haque Siddiqui, Hasan Jamal, Haq Nawaz Bhatti

Summary: In this study, magnesium-aluminum layered double hydroxides (Mg-Al-LDH) were synthesized using an environmentally friendly hydrothermal technique for adsorbing the dye reactive green 5 (RG5). To improve the adsorption capability, composites were prepared by combining Mg-Al-LDH with low-cost Mangifera indica stone biomass (MISB). The results showed that the composites had high adsorption capacities for RG5 dye and could be regenerated.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Unlocking the biosynthetic regulation role of polyketide alkaloid lydicamycins

Xuanlin Zhan, Xiaojie Li, Yunyan Zeng, Siyan Jiang, Chao Pan, Shiyu Pan, Jiaquan Huang, Heqian Zhang, Zhiwei Qin

Summary: This study reports on the potential prospects of natural products derived from the rhizosphere for the development of antibiotics and herbicides, as well as the advancements in cultivating a mutant strain that produces a substantial quantity of lydicamycins, a potent family for herbicide development.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

3D-printing of attapulgite monoliths with superior low-temperature selective catalytic reduction activity: the influence of thermal treatment

Jie Zhu, Jiangtao Yu, Linhua Zhu, Xiaoxiao Yu, Jixing Liu, Yanhong Chao, Jingzhou Yin, Peiwen Wu, Jian Liu, Wenshuai Zhu

Summary: This study successfully demonstrates the 3D printing of attapulgite monoliths and investigates the influence of thermal treatment on their properties. The thermal treated monoliths show superior catalytic performance at low temperatures.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Photo-electro concerted catalysis of a highly active Pt/CoP/C nanocomposite for the hydrogen evolution reaction

Yanzhu Ye, Yixiang Ye, Jiannan Cai, Zhongshui Li, Shen Lin

Summary: In this paper, a novel Pt/CoP/C photo-electro synergistic catalyst was successfully synthesized and its performance was investigated. The catalyst exhibited excellent photo-electro catalytic performance, with significantly higher hydrogen production compared to a commercial catalyst. The introduction of cobalt phosphide and the existence of Co3O4 were identified as key factors for enhancing the catalytic activity.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Synthesis of a water-based TEOS-PDMS sol-gel coating for hydrophobic cotton and polyester fabrics

Nurul Hidayah Abu Bakar, Wan Norfazilah Wan Ismail, Hartina Mohd Yusop, Noreen Farzuhana Mohd Zulkifli

Summary: Hydrophobic coatings inspired by the lotus effect have gained popularity for their ability to solve various problems. The sol-gel method, utilizing silica, alumina, and titania, is explored as an environmentally friendly approach to produce water-based hydrophobic coatings. This study focuses on producing water-based hydrophobic coatings for cotton and polyester fabrics using a one-step sol-gel method. The coated fabrics exhibited improved hydrophobic properties, altered surface morphologies, and lower air permeability compared to uncoated fabrics. TEOS-PDMS coating provides a promising approach for enhancing the hydrophobic and surface properties of cotton and polyester fabrics.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Non-aqueous electrochemistry of rhodamine B acylhydrazone

Nikita Belko, Hanna Maltanava, Anatol Lugovski, Polina Shabunya, Sviatlana Fatykhava, Evgeny Bondarenko, Pavel Chulkin, Sergey Poznyak, Michael Samtsov

Summary: This study investigates the difference in electrochemical behavior between rhodamine B hydrazide and rhodamine B acylhydrazone, and finds that rhodamine B acylhydrazone exhibits higher reversibility in electrooxidation. These results can be applied for developing new sensors with desired electrochemical properties.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Exploring the magnetic, electric and magnetodielectric properties of (1-x)Ba0.9Ni0.1Ti0.9Mn0.1O3-xCo0.9Mn0.1Fe1.9V0.1O4 multiferroic composites

Showket Ahmad Bhat, Mohd Ikram

Summary: In this study, 0-3 particulate multiferroic composites were synthesized and characterized. The composites exhibited excellent ferroelectric and ferromagnetic properties, as well as high piezoelectric strain and magnetoelectric coupling effects.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

On the mechanochemical synthesis of C-scorpionates with an oxime moiety and their application in the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction

Carla Gomes, Mariana Costa, Susana M. M. Lopes, Bernardo Albuquerque Nogueira, Rui Fausto, Jose A. Paixao, Teresa M. V. D. e Melo, Luisa M. D. R. S. Martins, Marta Pineiro

Summary: The development of sustainable processes requires the integration of green chemistry principles. In this study, a solvent-free synthesis method was developed to prepare new copper catalysts, which efficiently catalyze cycloaddition reactions under solvent-free mechanochemical conditions. Through this process, the principles of atom economy, reduction of solvents and auxiliaries, design for energy efficiency, and reduction of derivatives and catalysis are combined.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Phosphate ions improve the performance of BiFeO3 piezoelectric photoelectrochemical water splitting

Zhihua Liu, Jinzhe Li, Jianguo Zhou

Summary: This study demonstrates the enhancement of photoelectrochemical activity of BiFeO3 photoelectrodes through ion modification, which increases visible light absorption and active area, leading to improved PEC water splitting performance.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Synthesis of p-aminophenol by transfer hydrogenation of nitrobenzene with formic acid as a hydrogen source

Yisheng Zhang, Wensong Li, Jing Li, Fang Li, Wei Xue, Xinqiang Zhao, Yanji Wang

Summary: Pt/C and SO42-/ZrO2 were used as catalysts for the synthesis of p-aminophenol through the catalytic transfer hydrogenation of nitrobenzene in water with formic acid as the hydrogen source. The optimal Pt loading for PAP selectivity was found to be 1 wt%. The presence of different valence states of Pt affected both the nitrobenzene hydrogenation and formic acid decomposition. Among different solid acid catalysts tested, SO42-/ZrO2 exhibited the highest catalytic activity for p-aminophenol formation. Under the optimized reaction conditions, the conversion of nitrobenzene reached 80.0%, with a selectivity of 47.6% for p-aminophenol.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

A CuMoO4 nanocatalyst for Csp2-O cross-couplings; easy access to nitrofen derivatives

Pradyota Kumar Behera, Papita Behera, Amlan Swain, Santosh Kumar Sahu, Ajeena Sahoo, Laxmidhar Rout

Summary: We have developed a simple and direct method for the synthesis of diaryl ether using an oxygen bridged bimetallic CuMoO4 nanocatalyst under mild reaction conditions. The catalyst exhibited tolerance towards a wide range of substrates with various functional groups. It is efficient and recyclable. This methodology allows easy access to nitrofen derivatives (herbicides) from unactivated 2,4-dichlorophenol, which are important for agriculture and pharmaceuticals.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

A mechanistic study on coupling of CO2 and epoxide mediated by guanidine/TBAI catalysts

Yihua Fu, Yan Zhang, Changwei Hu, Zhishan Su

Summary: The mechanism of the reaction between CO2 and styrene oxide for cyclic carbonate was revealed using density functional theory calculations. The noncatalytic reaction occurred via a concerted mechanism, while in the presence of guanidine and tetrabutylammonium iodide (TBAI) co-catalysts, the epoxide ring-opening by nucleophilic attack of an iodide anion was predicted to be the rate-determining step. Guanidine acted as the H-bond donor to activate styrene oxide, facilitating the reaction with a lower activation barrier.

NEW JOURNAL OF CHEMISTRY (2024)

Article Chemistry, Multidisciplinary

Localized surface plasmon resonance assisted photoredox catalysis using newly fabricated copper-nanorods: a decarboxylative approach towards carbon-hydrogen bond formation under visible light

Saikat Khamarui, Sirshendu Ghosh

Summary: Copper nanorods (Cu-NRs) exhibit significant plasmonic behavior and can act as efficient catalysts in redox processes and coupling. A benign decarboxylative approach, utilizing localized surface plasmon resonance (LSPR) assisted catalysis with Cu-NRs, has been developed for the production of alkane analogues from alkyl carboxylic acids under visible light. The catalyst shows a broad substrate scope and high functional group tolerance, without the need for an external oxidant or proton source. A plausible mechanism for this recyclable nano-catalyst has also been proposed based on control experiments.

NEW JOURNAL OF CHEMISTRY (2024)