4.5 Article

Medial temporal lobe subregional morphometry using high resolution MRI in Alzheimer's disease

Journal

NEUROBIOLOGY OF AGING
Volume 49, Issue -, Pages 204-213

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.neurobiolaging.2016.09.011

Keywords

Preclinical Alzheimer disease; Prodromal Alzheimer disease; Subfields; Perirhinal cortex; MRI; Biomarkers

Funding

  1. National Institute on Aging [P30AG010124, R01 AG037376]
  2. National Institute of Biomedical Imaging and Bioengineering [R01 EB014346]
  3. Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health) [U01 AG024904]
  4. DOD ADNI (Department of Defense) [W81XWH-12-2-0012]
  5. National Institute on Aging
  6. National Institute of Biomedical Imaging and Bioengineering
  7. Canadian Institutes of Health Research
  8. AbbVie
  9. Alzheimer's Association
  10. Alzheimer's Drug Discovery Foundation
  11. Araclon Biotech
  12. BioClinica, Inc.
  13. Biogen
  14. Bristol-Myers Squibb Company
  15. CereSpir, Inc.
  16. Eisai Inc.
  17. Elan Pharmaceuticals, Inc.
  18. Eli Lilly and Company
  19. EuroImmun
  20. F. Hoffmann-La Roche Ltd
  21. Genentech, Inc.
  22. Fujirebio
  23. GE Healthcare
  24. IXICO Ltd.
  25. Janssen Alzheimer Immunotherapy Research & Development, LLC.
  26. Johnson & Johnson Pharmaceutical Research & Development LLC.
  27. Lumosity
  28. Lundbeck
  29. Merck Co., Inc.
  30. Meso Scale Diagnostics, LLC.
  31. NeuroRx Research
  32. Neurotrack Technologies
  33. Novartis Pharmaceuticals Corporation
  34. Pfizer Inc.
  35. Piramal Imaging
  36. Servier
  37. Takeda Pharmaceutical Company
  38. Transition Therapeutics

Ask authors/readers for more resources

Autopsy studies of Alzheimer's disease (AD) have found that neurofibrillary tangle (NFT) pathology of the medial temporal lobe (MTL) demonstrates selective topography with relatively stereotyped subregional involvement at early disease stages, prompting interest in more granular measurement of these structures with in vivo magnetic resonance imaging. We applied a novel, automated method for measurement of hippocampal subfields and extrahippocampal MTL cortical regions. The cohort included cognitively normal (CN) adults (n = 86), early mild cognitive impairment (n = 43), late MCI (n = 22), and mild AD (n = 40) patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI). For pseudolongitudinal analysis of the continuum from preclinical to mild AD dementia, the groups were further divided according to amyloid status based on positron emission tomography. Specific subregions associated with the early NFT pathology of AD were more sensitive to preclinical and early prodromal AD than whole hippocampal volume while more diffuse involvement was found in later stages. In particular, BA35, the first region associated with NFT deposition, was the only region to discriminate preclinical AD from amyloid negative cognitively normal adults (normal aging). In general, patterns of atrophy in the pseudolongitudinal analysis largely recapitulated Braak staging of NFTs within the MTL. (C) 2016 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available