4.7 Article

Weighted spatial based geometric scheme as an efficient algorithm for analyzing single-trial EEGS to improve cue-based BCI classification

Journal

NEURAL NETWORKS
Volume 92, Issue -, Pages 69-76

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neunet.2017.02.014

Keywords

Riemannian geometry; Cue-based Brain computer interface; Weighting algorithm; Covariance matrix

Ask authors/readers for more resources

There is a growing interest in analyzing the geometrical behavior of electroencephalogram (EEG) covariance matrix in the context of brain computer interface (BCI). The bottleneck of the current Riemannian framework is the bias of the mean vector of EEG signals to the noisy trials, which deteriorates the covariance matrix in the manifold space. This study presents a spatial weighting scheme to reduce the effect of noisy trials on the mean vector. To assess the proposed method, dataset Ha from BCI competition IV, containing the EEG trials of 9 subjects performing four mental tasks, was utilized. The performance of the proposed method is compared to the classical Riemannian method along with Common Spatial Pattern (CSP) on the dataset. The results show that when considering just two imagery classes, the proposed method performs on par with CSP method, whereas in the multi class scenario, the proposed algorithm outperforms the CSP approach on seven out of nine subjects. Incidentally, the proposed method obtains better accuracy for the majority of subjects compared to the classical Riemannian method. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available