4.6 Article

Using high-resolution satellite imagery to provide a relief priority map after earthquake

Journal

NATURAL HAZARDS
Volume 90, Issue 3, Pages 1087-1113

Publisher

SPRINGER
DOI: 10.1007/s11069-017-3085-y

Keywords

Relief priority map; Damage map; Texture analysis; Genetic algorithm; Neurofuzzy inference system

Ask authors/readers for more resources

After the earthquake occurrence, collecting correct information about the extent of damage is essential for managing critical conditions and allocating limited resources. The prepared building damage maps sometimes bring about waste of time required for rescuing individuals under the rubble by wrongly conducting rescue teams toward regions with a lower rescue priority. In this research, an algorithm based on using a proposed standard at database level was developed to prioritize damaged buildings by considering five key elements of land use type, the degree of damage to buildings, the land use differentiation index, time of the highest population density in each land use, and time of disaster's incidence. The steps of the proposed method which was implemented in the MATLAB environment include: detecting buildings on the pre- and post-event imagery, implementing texture features for each candidate building, choosing the optimal features by genetic algorithm, determining the degree of building damage in three classes of negligible damage, substantial damage, and heavy damage by using the difference between chosen features as inputs of the designed neurofuzzy inference system. Data collected from field observations were compared to the output obtained from the proposed algorithm. This comparison presented a general accuracy of 88% and Kappa coefficient of 79% in the classification of buildings into three damage classes. The proposed standard then was used for classifying damaged buildings into relief priorities of high, medium, and low. Findings revealed that the relief priority map could be a basis for correct guidance of relief and rescue teams during crucial times following earthquakes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available