4.6 Article

Strain engineering of monoclinic domains in KxNa1-xNbO3 epitaxial layers: a pathway to enhanced piezoelectric properties

Journal

NANOTECHNOLOGY
Volume 28, Issue 24, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1361-6528/aa715a

Keywords

ferroelectric domains; epitaxial strain; (K,Na)NbO3; monoclinic symmetry

Ask authors/readers for more resources

A novel concept to obtain a ferroelectric material with enhanced piezoelectric properties is proposed. This approach is based on the combination of two pathways: (i) the evolution of a ferroelectric monoclinic phase and, (ii) the coexistence of different types of ferroelectric domains leading to polarization discontinuities at the domain walls. Each of these pathways enables polarization rotation in the material which is responsible for giant piezoelectricity. Targeted incorporation of anisotropic epitaxial lattice strain is used to implement this approach. The feasibility of our concept is demonstrated for K0.9Na0.1NbO3 epitaxial layers grown on NdScO3 substrates where the coexistence of (100) pc and (001) pc pseudocubic oriented monoclinic domains is experimentally verified. This coexistence results in a complex periodic domain pattern with alternating emergence of ferroelectric in-plane a(1)a(2) and inclined MC monoclinic phases, which differ in the direction of the electrical polarization vector. Our approach opens the possibility to exploit ferroelectric properties in both vertical and lateral directions and to achieve enhanced piezoelectric properties in lead-free material caused by singularities at the domains walls.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available