4.7 Article

A sharper view of Pal 5's tails: discovery of stream perturbations with a novel non-parametric technique

Journal

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stx1208

Keywords

Galaxy: fundamental parameters; globular clusters: individual (Palomar 5); Galaxy: structure; dark matter

Funding

  1. European Research Council under the European Union's Seventh Framework Programme (FP)/ERC [308024]
  2. United Kingdom Science and Technology Council (STFC) [ST/N004493/1]
  3. STFC [ST/N004493/1, ST/P00556X/1] Funding Source: UKRI
  4. Science and Technology Facilities Council [ST/N004493/1, ST/P00556X/1, ST/N000927/1] Funding Source: researchfish

Ask authors/readers for more resources

Only in the MilkyWay is it possible to conduct an experiment that uses stellar streams to detect low-mass dark matter subhaloes. In smooth and static host potentials, tidal tails of disrupting satellites appear highly symmetric. However, perturbations from dark subhaloes, as well as from GMCs and the MilkyWay bar, can induce density fluctuations that destroy this symmetry. Motivated by the recent release of unprecedentedly deep and wide imaging data around the Pal 5 stellar stream, we develop a new probabilistic, adaptive and non-parametric technique that allows us to bring the cluster's tidal tails into clear focus. Strikingly, we uncover a stream whose density exhibits visible changes on a variety of angular scales. We detect significant bumps and dips, both narrow and broad: two peaks on either side of the progenitor, each only a fraction of a degree across, and two gaps,similar to 2 degrees and similar to 9 degrees wide, the latter accompanied by a gargantuan lump of debris. This largest density feature results in a pronounced intertail asymmetry which cannot be made consistent with an unperturbed stream according to a suite of simulations we have produced. We conjecture that the sharp peaks around Pal 5 are epicyclic overdensities, while the two dips are consistent with impacts by subhaloes. Assuming an age of 3.4 Gyr for Pal 5, these two gaps would correspond to the characteristic size of gaps created by subhaloes in the mass range of 10(6)-10(7)M(circle dot) and 10(7)-10(8)M(circle dot), respectively. In addition to dark substructure, we find that the bar of theMilkyWay can plausibly produce the asymmetric density seen in Pal 5 and that GMCs could cause the smaller gap.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available