4.7 Article Proceedings Paper

Deformable Discoidal Polymeric Nanoconstructs for the Precise Delivery of Therapeutic and Imaging Agents

Journal

MOLECULAR THERAPY
Volume 25, Issue 7, Pages 1514-1521

Publisher

CELL PRESS
DOI: 10.1016/j.ymthe.2017.02.012

Keywords

-

Funding

  1. European Research Council (European Union Seventh Framework Programme) [616695]
  2. Italian Association for Cancer Research (AIRC) [17664]

Ask authors/readers for more resources

Over the last 15 years, a plethora of materials and different formulations have been proposed for the realization of nanomedicines. Yet drug-loading efficiency, sequestration by phagocytic cells, and tumor accumulation are sub-optimal. This would imply that radically new design approaches are needed to propel the clinical integration of nanomedicines, overcoming well-accepted cliches. This work briefly reviews the use of deformable discoidal nanoconstructs as a novel delivery strategy for therapeutic and imaging agents. Inspired by blood cell behavior, these nanoconstructs are designed to efficiently navigate the circulatory system, minimize sequestration by phagocytic cells, and recognize the tortuous angiogenic microvasculature of neoplastic masses. This article discusses the notion of nanoparticle margination and vascular adhesion, as well as advantages associated with deformable particles. Finally, details on the synthesis, physico-chemical properties, and in vivo characterization of discoidal polymeric nanoconstructs are provided, with particular emphasis on their ability to independently control size, shape, surface properties, and mechanical stiffness. These nanoconstructs could help in gaining a deeper understanding of the mechanisms regulating the behavior of nanomedicines and identifying optimal delivery strategies for patient-specific therapeutic interventions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available