4.3 Article

DFT and MD study of adsorption sensitivity of aluminium phosphide nanotube towards some air pollutant gas molecules

Journal

MOLECULAR SIMULATION
Volume 43, Issue 9, Pages 675-690

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/08927022.2017.1295453

Keywords

Molecular dynamics simulation; aluminium phosphide nanotube; pollutant gases; DFT calculations; density of state

Funding

  1. University of Birjand Research Council

Ask authors/readers for more resources

To investigate the adsorption behaviour of CS2, CO2, SO2, H2Se and H2S gas molecules on the external surface of (6, 0) single-walled aluminium phosphide nanotube (AlPNT), the density functional theory (DFT) calculations at the B3LYP level of theory are performed. The partial densities of states (PDOS) for the SO2 molecule, the S and O atoms of SO2 molecule before and after adsorption on the surface of AlPNT have been plotted. The vibrational frequencies and physical properties such as chemical potential, chemical hardness, dipole moment and chemical electrophilicity of all studied complexes have been systematically investigated. The electron density and the Laplacian of the electron density for bond critical points have been examined by the AIM theory. Also the molecular dynamics (MD) simulations of two complexes with the minimum and maximum negative interaction energies that is: AlPNT/CO2 and AlPNT/SO2 complexes, respectively, have been considered.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available