4.6 Article

Photodynamic Therapy Using Photosensitizer-Encapsulated Polymeric Nanoparticle to Overcome ATP-Binding Cassette Transporter Subfamily G2 Function in Pancreatic Cancer

Journal

MOLECULAR CANCER THERAPEUTICS
Volume 16, Issue 8, Pages 1487-1496

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1535-7163.MCT-16-0642

Keywords

-

Categories

Funding

  1. Global Research and Development Center through National Research Foundation of Korea - Ministry of Science, ICT and Future Planning [NRF-2011-0031644]

Ask authors/readers for more resources

Chlorin-based photosensitizers are commonly used in photodynamic therapy (PDT). These drugs are effluxed by cell membrane transporters, such as the ATP-binding cassette subfamily G member 2 (ABCG2). PDT efficacy is limited in tumor cells expressing high levels of these proteins. Pancreatic cancer cell lines AsPC-1 and MIA PaCa-2, which have high and low ABCG2 expression, respectively, were used, and ABCG2-over-expressing MIA PaCa-2 cells were generated. We compared PDT efficacy between chlorin e6 (Ce6) and cationic photosensitizer-encapsulated polymeric nanoparticle (PS-pNP), which is comprised with Ce6, polyethylene glycol, and polyethylenimine. The intracellular concentration of Ce6 was significantly higher in MIA PaCa-2 cells than in AsPC-1 or ABCG2-overexpressing MIA PaCa-2 cells. PS-pNP increased intracellular levels of the photosensitizer in all cell lines. The cell viability experiments indicated increased Ce6 resistance in ABCG2-overexpressing cells. In contrast, PS-pNP produced similar levels of cytotoxicity in each of the cancer cell lines tested. Singlet oxygen production was higher in cells treated with PS-pNP than in those treated with Ce6. Furthermore, in heterotopic and orthotopic AsPC-1 xenograft mouse models, PDT using PS-pNP significantly reduced tumor volume in comparison with that of Ce6 treatment. PS-pNP could increase intracellular Ce6 concentration, which was related with reduced ABCG2-mediated efflux of Ce6, thereby enhancing the effects of PDT in pancreatic cancer cells. (C)2017 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available