4.6 Article

Radioresistant Sf9 insect cells readily undergo an intrinsic mode of apoptosis in response to histone deacetylase (HDAC) inhibition

Journal

MOLECULAR AND CELLULAR BIOCHEMISTRY
Volume 444, Issue 1-2, Pages 207-218

Publisher

SPRINGER
DOI: 10.1007/s11010-017-3245-0

Keywords

Apoptosis; Sf9 cells; Reactive oxygen species; DNA damage; Sodium butyrate; HDAC inhibitor

Categories

Funding

  1. DRDO (Defence Research and Development Organization) [INM-311.1.5]
  2. Indian Council of Medical Research (ICMR)/Defence Research and Development Organization (DRDO), India

Ask authors/readers for more resources

Insect cell lines have been utilized as an important higher eukaryotic model system to decipher stress responses and cell death mechanisms. Lepidopteran Sf9 cells (derived from the ovaries of Spodoptera frugiperda) display nearly 100 times higher resistance to ionizing radiation in contrast to mammalian cells, which is partly contributed by an unusually high HDAC activity. However, their response to HDAC inhibition remains to be evaluated. In the present study, the effects of HDAC inhibitor (NaBt) on Sf9 cellular/nuclear morphology, cell cycle progression, DNA damage/repair, redox status, and mitochondrial perturbations were evaluated. NaBt-induced apoptosis was evident at 18 h in Sf9 cells at 2 mM concentration, primarily through mitochondrial induction of oxidative stress and subsequent DNA damage. Cell cycle analysis revealed appearance of sub-G1 DNA content at 12 h onwards and DNA fragmentation by 18 h. Initial few hours of treatment caused significant loss in MMP through oxidation of mitochondrial inner membrane protein, i.e., cardiolipin. HDAC inhibition-mediated apoptosis was associated with increased Bax/Bcl2 ratio, mitochondrial cytochrome-c release, and caspase-3 activation. The study thus infers that Sf9 cells, which can withstand very high radiation doses, are quite sensitive to the increase in the chromatin acetylation levels. In addition, HDAC inhibition also sensitized Sf9 cells to radiation-induced DNA damage, further corroborating our recent finding that chromatin compactness contributes significantly to their radioresistance. Therefore, the study demonstrates prominence of prevailing DNA/chromatin protective mechanisms in Lepidopteran insect cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available