4.6 Article

Stress-Relaxation Behavior of Magnesium-3Gadolinium-2Calcium-Based Alloys at Elevated Temperatures

Publisher

SPRINGER
DOI: 10.1007/s11661-017-4324-2

Keywords

-

Funding

  1. UQ CIEF

Ask authors/readers for more resources

Based on previously published work on binary Mg alloys by Abaspour et al. and on the magnesium (Mg)-6gadolinium (Gd)-2zinc (Zn)-0.6zirconium (Zr) (wt pct) alloy reported by Nie et al., a number of new lower-cost Mg-3Gd-2calcium (Ca) (wt pct)-based creep-resistant magnesium alloys were developed by replacing part of the Gd with Ca. After solution treatment at 793 K (520 degrees C), the Ca-containing alloys exhibited an increased strength and a reduced stress relaxation at 453 K (180 degrees C) compared with the Mg-6Gd-2Zn-0.6Zr (wt pct) alloy. This work indicates that the replacement of Gd with Ca is a promising approach to develop lower-cost Mg alloys with an improved creep resistance. The results support the hypothesis that the short-range order of solutes governs the creep behavior of magnesium alloys.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available