4.6 Article

Measurement of micro-scale soil deformation around roots using four-dimensional synchrotron tomography and image correlation

Journal

JOURNAL OF THE ROYAL SOCIETY INTERFACE
Volume 14, Issue 136, Pages -

Publisher

ROYAL SOC
DOI: 10.1098/rsif.2017.0560

Keywords

X-ray computed tomography; synchrotron; structural imaging

Funding

  1. ERC Consolidator grant [646809]
  2. BBSRC [BB/L026058/1]
  3. University of Southampton New Frontiers Fellowship
  4. BBSRC [BB/L025620/1, BB/L026058/1] Funding Source: UKRI
  5. EPSRC [EP/H01506X/1] Funding Source: UKRI
  6. NERC [NE/L000237/1] Funding Source: UKRI
  7. Biotechnology and Biological Sciences Research Council [BB/L026058/1, 1506977, BB/L025620/1] Funding Source: researchfish
  8. Engineering and Physical Sciences Research Council [1786838, EP/H01506X/1] Funding Source: researchfish
  9. Natural Environment Research Council [NE/L000237/1] Funding Source: researchfish

Ask authors/readers for more resources

This study applied time lapse (four-dimensional) synchrotron X-ray computed tomography to observe micro-scale interactions between plant roots and soil. Functionally contrasting maize root tips were repeatedly imaged during ingress into soil columns of varying water content and compaction. This yielded sequences of three-dimensional densiometric data, representing time-resolved geometric soil and root configurations at the micronmetre scale. These data were used as inputs for two full-field kinematic quantification methods, which enabled the analysis of three-dimensional soil deformation around elongating roots. Discrete object tracking was used to track rigid mineral grains, while continuum digital volume correlation was used to track grey-level patterns within local sub-volumes. These techniques both allowed full-field soil displacements to be quantified at an intra-rhizosphere spatial sampling scale of less than 300 mm. Significant differences in deformation mechanisms were identified around different phenotypes under different soil conditions. A uniquely strong contrast was observed between intact and de-capped roots grown in dry, compacted soil. This provides evidence that functional traits of the root cap significantly reduce the amount of soil disturbance per unit of root elongation, with this effect being particularly significant in drier soil.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available