4.7 Article

High-Throughput Analysis of Intact Human Proteins Using UVPD and HCD on an Orbitrap Mass Spectrometer

Journal

JOURNAL OF PROTEOME RESEARCH
Volume 16, Issue 5, Pages 2072-2079

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jproteome.7b00043

Keywords

proteomics; protein; top-down; ultraviolet photodissociation; higher-energy collisional dissociation; Orbitrap mass spectrometer; proteoform; HeLa

Funding

  1. NSF [CHE-1402753]
  2. Welch Foundation [F-1155]
  3. NIH [1K12GM102745]
  4. UT System
  5. National Institute of General Medical Sciences [P41GM108569]
  6. Office of the Provost
  7. Office for Research
  8. Northwestern University Information Technology

Ask authors/readers for more resources

The analysis of intact proteins (top-down strategy) by mass spectrometry has great potential to elucidate proteoform variation, including patterns of post-translational modifications (PTMs), which may not be discernible by analysis of peptides alone (bottom-up approach). To maximize sequence coverage and localization of PTMs, various fragmentation modes have been developed to produce fragment ions from deep within intact proteins. Ultraviolet photodissociation (UVPD) has recently been shown to produce high sequence coverage and PTM retention on a variety of proteins, with increasing evidence of efficacy on a chromatographic time scale. However, utilization of UVPD for high-throughput top-down analysis to date has been limited by bioinformatics. Here we detected 153 proteins and 489 proteoforms using UVPD and 271 proteins and 982 proteoforms using higher energy collisional dissociation (HCD) in a comparative analysis of HeLa whole-cell lysate by qualitative top-down proteomics. Of the total detected proteoforms, 286 overlapped between the UVPD and HCD data sets, with 68% of proteoforms having C scores greater than 40 for UVPD and 63% for HCD. The average sequence coverage (28 20% for UVPD versus 17 8% for HCD, p < 0.0001) was found to be higher for UVPD than HCD and with a trend toward improvement in q value for the UVPD data set. This study demonstrates the complementarity of UVPD and HCD for more extensive protein profiling and proteoform characterization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available