4.3 Article

Soil nutrient status and yield of rice as affected by long-term integrated use of organic and inorganic fertilizers

Journal

JOURNAL OF PLANT NUTRITION
Volume 41, Issue 4, Pages 539-544

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/01904167.2017.1392570

Keywords

compost; nutrient status; rice; sewage sludge and yield

Categories

Ask authors/readers for more resources

Nutrient balance is the key component to increase crop yields. Excess and imbalanced use of nutrients has caused nutrient mining from the soil and deteriorated crop productivity and ultimately soil health. Replenishment of these nutrients has a direct impact on soil health and crop productivity. Based on this fact, the present research was conducted to determine the effects of long-term integrated use of organic and inorganic fertilizers on soil nutrient status and yield (grain and straw) in rice. Different combinations of inorganic nitrogen (N) and organic sources (sewage sludge and compost) were applied to the soil. Data revealed that application of mineral NPK in combination with 50% N through compost significantly increased the organic matter content (0.36%), available phosphorus (16.50kg/ha) and available potassium content (239.80kg/ha) in soil. The maximum available N (225.12kg/ha) was found by the substitution of 50% N through sewage sludge. This improvement in soil nutrient status through combined use of organic and inorganic fertilizers produced significant increase in grain and straw yield as compared to inorganic fertilizers alone. Maximum grain (6.96t/ha) and straw (8.56t/ha) yields were found in treatment having substitution of 50% N (recommended) through compost @10t/ha. Also, a significant positive correlation was found between soil nutrients and straw and grain yield in rice. Thus the study demonstrated that substitution of 50% inorganic N through compost will be a good alternative for improving soil fertility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available