4.8 Article

Optical Trap-Mediated High-Sensitivity Nanohole Array Biosensors with Random Nanospikes

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 8, Issue 2, Pages 370-374

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.6b02262

Keywords

-

Funding

  1. JSPS KAKENHI [26286029, 15H03010, 24654091, 15K14697, 16K14340, 14J08760, 16H06507]
  2. Canon Foundation
  3. Key Project Grant Program of Osaka Prefecture University
  4. Cooperative Research Program of Network Joint Research Center for Materials and Devices
  5. Grants-in-Aid for Scientific Research [15H03010, 26286029, 14J08760, 15K14697, 16K14340] Funding Source: KAKEN

Ask authors/readers for more resources

We clarify an unconventional principle of the light-driven operation of a biosensor for enhanced sensitivity with the help of random nanospikes added to the surface of a nanohole array. Such a system is capable of optically guiding viruses and trapping them in the vicinity of a highly sensitive site by an anomalous light-induced force arising from random-nanospike-modulated extraordinary optical transmission and the plasmonic mirror image in a virus as a dielectric submicron object. In particular, after guiding the viruses near the apex of nanospikes, there are conditions where the spectral peak shift of extraordinary optical transmission can be greatly increased and reach several hundred nanometers in comparison with that of a conventional nanohole array without random nanospikes. These results will allow for the development of a simple, rapid, and highly sensitive virus detection method based on optical trapping with the help of random-nanospike-modulated extraordinary optical transmission, facilitating convenient medical diagnosis and food inspection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available