4.6 Article

Enhanced Performance and Stability of Polymer Solar Cells by In Situ Formed AlOx Passivation and Doping

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 121, Issue 19, Pages 10275-10281

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.6b12459

Keywords

-

Funding

  1. Natural Science Foundation of China [61604119]
  2. Young Talent Fund of University Association for Science and Technology in Shaanxi, China
  3. Fundamental Research Funds for the Central Universities

Ask authors/readers for more resources

In this paper, aqueous solution-processed zinc oxide (ZnO) layer modified by ultrathin aluminum (Al) layer was applied to act as the electron transport layer for inverted organic solar cells (OSCs). Compared to devices fabricated with pristine ZnO transport layer, applying an ultrathin Al layer (1.2 nm) on ZnO surface simultaneously enhanced the open circuit voltage (V-oc) from 0.54 to 0.60 V, short circuit current density (J(sc)) from 8.82 to 9.73 mA/cm(2), and fill factor (FF) from 0.56 to 0.66, resulting in better device performance from 2.7% to 3.9% based on poly(3-hexylthiophene):phenyl- acid methyl ester (P3HT:PC61BM) blend. A power conversion efficiency (PCE) as high as 8.0% was reached by applying Poly({4,8-bis[(2-ethylhexyl) oxy]benzo [1,2- b:4,5-b'] dithiophene-2,6-diyl}{3-fluoro-2- [ (2-ethylhexy) carbonyl] thieno-[3,4- b]thiophenediyl}) : [6,6]-phenyl-C-71-butyric acid methyl ester (PTB-7:PC71BM) active layer. The V-oc increase was due to the increased build-in potential and the decreased cathode surface work-function. The enhanced J(sc) and FF were due to the significantly increased charge carrier mobility and reduced surface defects. Meanwhile, the device stability was also much enhanced.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available