4.5 Article

Selectivity of Glycine for Facets on Gold Nanoparticles

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 122, Issue 13, Pages 3491-3499

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.7b10677

Keywords

-

Funding

  1. National Science Foundation [CBET-1236053, ACI-1053575]
  2. National Institutes of Health [EB006006]
  3. Research Triangle NSF-MRSEC on Programmable Soft Matter [DMR-1121107]

Ask authors/readers for more resources

The performance of nanoparticles in medical applications depends on their interactions with various molecules. Despite extensive research on this subject, it remains unclear where on an inhomogeneous nanoparticle molecules prefer to adsorb. Here we investigate the selectivity of glycine molecules for facets on five bare gold nanoparticles with diameters from 1.0 to 5.0 nm. Well-tempered metadynamics simulations are conducted to calculate the adsorption free-energy landscapes of a glycine molecule on various locations for the five gold nanoparticles in explicit water. We also calculate the glycine molecule's adsorption free energies on the five gold nanoparticles in vacuum and on three flat gold surfaces as a reference. The simulation results show that glycine molecules prefer to adsorb on the (110) facet for the 1.0 and 2.0 nm nanoparticles, the edges for the 3.0 nm nanoparticle, and the (111) facet for the 4.0 and 5.0 nm nanoparticles in water. The effect of water solvent on the selectivity is investigated through comparing the adsorption free-energy landscapes for glycine molecules on the nanoparticles in water and in vacuum. The area of the facet plays a key role in determining the selectivity of glycine molecules for the different facets, especially the shift of the selectivity as the nanoparticle diameter changes. Our simulations suggest that nanoparticle size and shape can be engineered to control the preferred adsorption location of molecules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available