4.6 Article

Effect of phytotoxic secondary metabolites and semisynthetic compounds from endophytic fungus Xylaria feejeensis strain SM3e-1b on spinach chloroplast photosynthesis

Journal

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jphotobiol.2016.11.002

Keywords

Xylaria feejeensis; Sapium macrocarpum; Endophytic fungi; Cyclohexenone derivative; Quinone derivative; Coriloxine; Phytotoxic compounds; Photosynthetic activities; Hill reaction inhibitors; Uncoupler agents

Funding

  1. Consejo Nacional de Ciencia y Tecnologia grant [179194]
  2. CONACyT

Ask authors/readers for more resources

We investigated the mechanism of action on the photosynthesis light reactions of three major secondary metabolites produced by the endophytic fungus Xylaria feejeensis strain SM3e-1b, isolated from Sapium macrocarpum; and four novel derivatives of coriloxine, a major compound produced by X feejeensis. The natural phytotoxins include one epoxycyclohexenone derivative, coriloxine (1), and two quinone derivatives (2-3). The semisynthetic derivatives of coriloxine are two cyclohexenone (4-6) and two quinone compounds (5-7). Cyclohexenone (4), (4R,55,6R)-6-chloro-4,5-dihydroxy-3-methoxy-5-methylcyclohex-2-enone, inhibited ATP synthesis in freshly lysed spinach chloroplasts from water to MV; it also partly inhibited the basal and uncoupled photosynthetic electron transport, and significantly enhanced the phosphorylating electron transport and Mg2+-ATPase activity, thus demonstrating its action as an uncoupler agent. On the other hand, quinone (7), 2-((4-butylphenyl)amino)5-methoxy-3-methylcyclohexa-2,5-diene-1,4-dione, inhibited ATP synthesis, and non-cyclic electron transport from water to MV in basal, phosphorylating and uncoupled conditions in a concentration-dependent manner. Hence, (7) behaves as a Hill reaction inhibitor at the PSII electron transport on the water splitting enzyme (OEC), and on the acceptor side between P-680 and Q(A). This mechanism of action was confirmed by chlorophyll a fluorescence measurements. These results indicate that coriloxine derivatives 4 and 7 could work as prototype structures for the development of new herbicides. Contrastingly, natural products 1-3, and derivatives 5 and 6 did not show a significant inhibitory effect on ATP synthesis. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available