4.7 Article

Targeting hypoxia-mediated YAP1 nuclear translocation ameliorates pathogenesis of endometriosis without compromising maternal fertility

Journal

JOURNAL OF PATHOLOGY
Volume 242, Issue 4, Pages 476-487

Publisher

WILEY
DOI: 10.1002/path.4922

Keywords

hypoxia; gene regulation; pathogenesis; therapy; reproductive function

Funding

  1. Ministry of Science and Technology (MOST) [105-2320-B-006-055-MY2, 104-2320-B-006-036-MY3]

Ask authors/readers for more resources

Endometriosis is a highly prevalent gynaecological disease that severely reduces women's health and quality of life. Ectopic endometriotic lesions have evolved mechanisms to survive in the hypoxic peritoneal microenvironment by regulating the expression of a significant subset of genes. However, the master regulator controlling these genes remains to be characterized. Herein, by using bioinformatics analysis and experimental verification, we identified yes-associated protein 1 (YAP1) as a master regulator of endometriosis. Nuclear localization and transcriptional activity of YAP1 were up-regulated by hypoxia via down-regulation of LATS1, a kinase that inactivates YAP1. Disruption of hypoxia-induced YAP1 signalling by siRNA knockdown or inhibitor treatment abolished critical biological processes involved in endometriosis development such as steroidogenesis, angiogenesis, inflammation, migration, innervation, and cell proliferation. Treatment with a YAP1 inhibitor caused the regression of endometriotic lesions without affecting maternal fertility or the growth rate of offspring in the mouse model of endometriosis. Taken together, we identify hypoxia/LATS1/YAP1 as a novel pathway for the pathogenesis of endometriosis and demonstrate that targeting YAP1 might be an alternative approach to treat endometriosis. Copyright (C) 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available