4.7 Article

Interaction between antidepressant drug and anionic surfactant in low concentration range in aqueous/salt/urea solution: A conductometric and fluorometric study

Journal

JOURNAL OF MOLECULAR LIQUIDS
Volume 227, Issue -, Pages 1-14

Publisher

ELSEVIER
DOI: 10.1016/j.molliq.2016.11.113

Keywords

Antidepressant drug; Interaction parameter; Surfactant; Enthalpy; Aggregation number

Ask authors/readers for more resources

Aqueous/salt/urea micellar solutions of amphiphilic antidepressant drug amitriptyline hydrochloride (AMT) and anionic surfactant sodium dodecylbenzenesulfonate (SDBS) have been examined by conductivity and fluorescence measurements at different temperatures and composition. From the conductometric study, values of critical micelle concentration (cmc) of drug have been evaluated and analyzed in terms of effect of surfactant on the hydrophobic nature of AMT-SDBS complex. The values of critical micelle concentration (cmc) and other aggregation parameters, micellar mole fraction (X-1) and interaction parameters (beta) were obtained and discussed in detail. In mixtures of AMT and SDBS, the synergistic interactions in mixed micelles formation increases with the raise in mole fraction of surfactant in absence and attendance of salt/urea. Thermodynamic parameters of the mixtures in aqueous as well as in salt/urea solution have been evaluated by means of a pseudo-phase model. The effect of NaCl shows the salting-out effect, which promotes aggregate formation of AMT and SDBS as well as their mixed systems at lower concentration relative to aqueous solution. The micelle aggregation number (N-agg) of drug increases with the raise in surfactant mole fraction in mixtures. N-agg value of individual and mixed amphiphiles rises in the presence of electrolyte while reduces in the occurrence of urea. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Physical

Effect of composition of mono/di-hydroxy organic compounds and temperature on the aggregation behavior and physico-chemical properties of polyvinyl alcohol plus TTAB mixture

Sharmin Sultana, Malik Abdul Rub, Marzia Rahman, Shahed Rana, Mohammad Majibur Rahman, Md Anamul Hoque, Yousef G. Alghamdi, Abdullah M. Asiri

Summary: In this study, the aggregation behaviors of PVA and TTAB in alcohols/diols media were investigated using conductivity measurements. The physico-chemical parameters and thermodynamic properties were determined. The results showed that the CMC values varied in different solvents, indicating the significant influence of solvents on the micelle formation of TTAB + PVA mixture. It was also found that PVA molecules interacted exclusively with TTAB through hydrogen bonding, ion-dipole, and hydrophobic interactions.

JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY (2023)

Article Biochemistry & Molecular Biology

Physico-chemical properties of the association of cetyltrimethylammonium bromide and bovine serum albumin mixture in aqueous-organic mixed solvents

Md. Anamul Hoque, Mohammad Idrish Ali, Malik Abdul Rub, Marzia Rahman, Shahed Rana, Mohammad Majibur Rahman, Dileep Kumar, Naved Azum, Abdullah M. Asiri, Mohammed Abdullah Khan

Summary: In this study, the association behavior of bovine serum albumin (BSA) and cetyl-trimethylammonium bromide (CTAB) was investigated using the conductivity method. The association phenomenon was detected by changes in conductivity and various physico-chemical properties. The interaction between BSA and CTAB was influenced by temperature and hydration extent. The binding interactions were believed to involve H-bonding, ion-dipole, and hydrophobic interactions.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2023)

Article Chemistry, Physical

Investigation of an anaesthetic drug (tetracaine hydrochloride) in the presence of ionic fluid and surfactant: Mixed micellization & spectroscopic studies

Naved Azum, Maha Moteb Alotaibi, Maroof Ali, Malik Abdul Rub, Hadi M. Marwani, Khalid A. Alamry, Abdullah M. Asiri

Summary: The current study investigated the influence of an ionic liquid and cationic surfactant on the physicochemical properties of an anaesthetic drug, tetracaine hydrochloride (TCH). Tensiometric and absorption spectroscopic methods were used to analyze the interaction between TCH and the ionic liquid (1-hexadecyl-3-methyl imidazolium chloride, SAIL) and cationic surfactant (cetylpyridinium chloride, CPC). The results showed that TCH exhibited a higher synergistic interaction with SAIL compared to CPC, which was confirmed by UV-visible spectroscopy and the binding constant value.

JOURNAL OF MOLECULAR LIQUIDS (2023)

Article Polymer Science

Chitosan-Cu Catalyzed Novel Ferrocenated Spiropyrrolidines: Green Synthesis, Single Crystal X-ray Diffraction, Hirshfeld Surface and Antibacterial Studies

Mohammad Asad, Muhammad Nadeem Arshad, Abdullah M. Asiri, Mohammed M. Rahman, Snigdha Kumaran, Mohammed Musthafa Thorakkattil Neerankuzhiyil

Summary: Chitosan-bounded copper (chitosan-Cu) was utilized for the green synthesis of novel ferrocenated spiropyrrolidine hybrids. A one-pot three-component 1,3-dipolar cycloaddition reaction using tyrosine, glycine, and isatin derivatives was employed to form spiropyrrolidines from 1-(4-bromophenyl)-ferrocene-prop-2-en-1-one and azomethine ylides. The synthesized spiropyrrolidines showed good antibacterial activity against Gram-positive and Gram-negative bacterial strains.

POLYMERS (2023)

Review Polymer Science

Green Composites Based on Animal Fiber and Their Applications for a Sustainable Future

Guravtar Singh Mann, Naved Azum, Anish Khan, Malik Abdul Rub, Md Imtaiyaz Hassan, Kisa Fatima, Abdullah M. Asiri

Summary: Global climate change has already caused various environmental effects and led to a shift in focus towards sustainable materials. Green composites, which combine renewable fibers with polymers, offer a wide range of applications and superior features compared to conventional materials.

POLYMERS (2023)

Article Chemistry, Analytical

Sensitive and Rapid Detection of Aspartic Acid with Co3O4-ZnO Nanorods Using Differential Pulse Voltammetry

Sulaiman Y. Alfaifi, Waheed Abiodun Adeosun, Abdullah M. Asiri, Mohammed M. Rahman

Summary: This study proposed the use of doped Co3O4-ZnO nanorod materials for the detection of aspartic acid using differential pulse voltammetry. The synthesized composite exhibited excellent properties for the detection of aspartic acid, including low limit of detection, high sensitivity, and wide linear range. The developed sensor based on Co3O4-ZnO nanorod material showed repeatable and stable current response for aspartic acid, with no interference from other electroactive compounds.

BIOSENSORS-BASEL (2023)

Article Polymer Science

Polymer Membranes of Zeolitic Imidazole Framework-8 with Sodium Alginate Synthesized from ZIF-8 and Their Application in Light Gas Separation

Aftab Aslam Parwaz Khan, Mallikarjunagouda B. Patil, Laxmibai P. Rathod, Shivalila G. Vader, Pankaj Raizada, Pardeep Singh, Maha M. Alotaibi, Mohammad Omaish Ansari, Anish Khan, Naved Azum, Malik Abdul Rub, Muhammad Nadeem Arshad, Abdullah M. Asiri

Summary: The study assessed the potential of nanocomposite membranes (NCMs) made of sodium alginate and embedded with synthesized zeolitic imidazole framework-8 (ZIF-8) as fillers for separating gaseous mixtures generated by methane reforming. ZIF-8 crystals were synthesized through hydrothermal synthesis, with sizes ranging from 50 to 70 nm. NCMs with 15% filler loading (synthesized ZIF-8) outperformed neat polymer membranes in terms of H-2 permeability and selectivity, achieving a purity of up to 95%. However, NCMs did not perform better than neat polymer membranes in separating gas mixtures. The combination of ZIF-8 and sodium alginate as fillers is a new and worth investigating.

POLYMERS (2023)

Article Chemistry, Physical

Interaction of promethazine hydrochloride with TX-165 in aqueous, NaCl and urea media: a tensiometry and FTIR analysis

M. Alfakeer, Malik Abdul Rub, Naved Azum, Anish Khan, Hadi M. M. Marwani, Khalid A. A. Alamry, Abdullah M. M. Asiri

Summary: An experiment was conducted to investigate the interactions of promethazine hydrochloride (PMT) with TX-165 at the interface in different ratios and solvents. Thorough FTIR spectroscopy was used to study the pure and mixed systems in aqueous solution. The study suggested that TX-165 surfactant could be used as an effective antidepressant drug delivery agent.

MOLECULAR PHYSICS (2023)

Article Physics, Applied

Magnetic and Thermal Hysteresis in Monolayer Anthracene-Type Nanostructures

Aftab Aslam Parwaz Khan, Z. Fadil, Pankaj Raizada, Pardeep Singh, Maha Alotaibi, Mohammad Omaish Ansari, Anish Khan, Abdullah M. Asiri, Chaitany Jayprakash Raorane

Summary: A monolayer anthracene-like nanostructure was studied through Monte Carlo simulations to determine its compensation temperature and magnetic hysteresis cycle. The effects of exchange coupling on compensation and transition temperatures were discussed. The study also investigated the magnetic hysteresis cycles and surface of multi-loop hysteresis with respect to strong exchange coupling and temperature parameters. This research has significant implications for multi-state memories and nanotechnology.
Review Chemistry, Multidisciplinary

Two-dimensional MXenes as Emerging Materials: A Comprehensive Review

Umer Shahzad, Hadi M. Marwani, Mohsin Saeed, Abdullah M. Asiri, Mohammed M. Rahman

Summary: Due to their unique two-dimensional layered microstructure, MXenes are considered promising candidates for addressing energy and environmental issues, thanks to their numerous functionalities on the surface and excellent electrical, thermal, and optical features. Altering the dimensions, structure, surface chemistry, and chemical composition of MXenes can enhance their energy conversion and storage capabilities. Therefore, it is crucial to understand the relationship between structure and property from an applied perspective. This study reviews the synthesis, properties, and potential applications of MXenes and discusses their structural, chemical, optical, mechanical, and thermal properties, as well as their applications in photocatalysis, gas sensing, supercapacitors, electrocatalysis, and environmental remediation. It also highlights the progress and future prospects of MXene-based composites, providing valuable insights for scientists in academia and material sciences.

CHEMISTRYSELECT (2023)

Article Polymer Science

Orange Dye and Silicone Glue Composite Gel-Based Optimized Impedimetric and Capacitive Surface-Type Proximity Sensors

Khasan S. Karimov, Muhammad Tariq Saeed Chani, Noshin Fatima, Abdullah M. Asiri, Mohammed M. Rahman

Summary: Optimized surface-type impedimetric and capacitive proximity sensors have been fabricated on paper substrates using rubbing-in technology. These sensors can detect objects by sensing changes in impedance and/or capacitance when the object approaches, and they can be widely used in various fields due to their low cost, easy fabrication, and environmentally friendly materials.
Review Chemistry, Multidisciplinary

Recent advances in bio-based polybenzoxazines as an interesting adhesive coating

Hafsah A. Klfout, Abdullah M. Asiri, Khalid A. Alamry, Mahmoud A. Hussein

Summary: Polybenzoxazine (PBz) is an excellent resin with diverse applications. The peculiar properties of benzoxazines have attracted the attention of researchers worldwide. However, petroleum-based benzoxazines are facing environmental concerns, leading to the research and development of bio-based alternatives. Bio-based polybenzoxazine, epoxy, and polysiloxane-based resins have gained interest in recent years due to their anticorrosion, eco-friendly, affordable, and low water absorption properties. This review provides an overview of polybenzoxazine, focusing on the advances in synthesizing bio-based polybenzoxazine, their properties, and their use in coating applications.

RSC ADVANCES (2023)

Article Chemistry, Multidisciplinary

Design, synthesis and biological evaluation of new eugenol derivatives containing 1,3,4-oxadiazole as novel inhibitors of thymidylate synthase

Mohammad Mahboob Alam, Serag Eldin I. Elbehairi, Ali A. Shati, Rania A. Hussien, Mohammad Y. Alfaifi, Azizah M. Malebari, Mohammad Asad, Ahmed A. Elhenawy, Abdullah M. Asiri, Ali M. Mahzari, Reem F. Alshehri, Syed Nazreen

Summary: Synthetic modification of eugenol, a natural anticancer agent, resulted in the production of new 1,3,4-oxadiazole analogues as inhibitors of thymidylate synthase. Compound 9 and 17 showed promising cytotoxicity against breast cancer and prostate cancer cells, without any side effects.

NEW JOURNAL OF CHEMISTRY (2023)

Article Chemistry, Physical

Dimer-parity dependent odd-even effects in photoinduced transitions to cholesteric and twist grain boundary SmC* mesophases: PBG characteristics

Rajalaxmi Sahoo, C. Reshma, D. S. Shankar Rao, C. V. Yelamaggad, S. Krishna Prasad

Summary: This study investigates the influence of the flexible spacer parity of a guest photoactive liquid crystalline dimer on the photonic bandgap features of the cholesteric and twist grain boundary smectic C phases of the host molecule. The results show that the parity of the photoactive dimer affects the width of the photonic bandgap and the blue-shift of the cholesteric phase. Additionally, the parity of the dimer also affects the layer spacing and two-dimensional periodicity of the liquid crystalline phases.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Understanding the CO2 capture potential of tetrapropylammonium-based multifunctional deep eutectic solvent via molecular simulation

Sara Rozas, Alberto Gutierrez, Mert Atilhan, Alfredo Bol, Santiago Aparicio

Summary: This study presents a multiscale theoretical investigation on the use of bifunctional hydrophobic Deep Eutectic Solvent for carbon capture using tetrapropylammonium chloride, acetic acid, and ethanolamine. The characterization includes nanoscale analysis of CO2 absorption mechanisms and changes in liquid phase properties during gas capture.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Theoretical study of the Cu2+-glycine interaction in ammonia and effects

Tabouli Eric Da-yang, Alhadji Malloum, Jean Jules Fifen, Mama Nsangou, Jeanet Conradie

Summary: In this study, the potential energy of different glycine tautomers and their interaction with Cu2+ cations was investigated. The results showed that the solvation medium and the presence of Cu2+ cations influenced the stability of glycine tautomers.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Morphology study of light- and pH-responsive amphiphiles with DSA for detection of nitrobenzene derivatives

Xiaoliang Gou, Nan Ye, Qingqing Han, Junjie Cui, Long Yi Jin

Summary: In this study, amphiphilic rod-coil molecules with rigid DSA parts and flexible oligoether chains were designed and their assembly capacities were investigated. The morphology of the molecular aggregates was influenced by the pH of the solution and UV light, and the aggregates showed adsorption capacity for nitroaromatic compounds.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Effect of SBS structure on viscosity of SBS-modified asphalt based on molecular dynamics: Insights from shearing phase morphology, adsorption and swelling mechanisms

Shuang Liu, Liyan Shan, Cong Qi, Wenhui Zhang, Guannan Li, Bei Wang, Wei Wei

Summary: Optimizing the design of styrene-butadiene-styrene copolymer (SBS) is crucial for producing cost-effective SBS modifiers and improving road quality. This study examined the influence of SBS content and molecular structure on viscosity and compatibility. The results showed that the viscosity contribution of SBS is determined by its molecular structure and phase morphology.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Vaporization enthalpy of azeotropes by the solution calorimetry method

Artem A. Petrov, Ekaterina A. Titova, Aydar A. Akhmadiyarov, Ilnaz T. Rakipov, Boris N. Solomonov

Summary: This work focuses on the thermochemistry of solvation of azeotropes. The enthalpies of dissolution of azeotropes in different mediums were determined, and the impact of the structure of the azeotropes on their properties in solution was discussed. A correlation between enthalpies of solvation and molar refraction was used to determine the vaporization enthalpies of azeotropes for the first time. The results were found to be consistent with literature data, obtained using direct and calculated methods. These findings contribute to the analysis of the structure-property relationships of azeotropes.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Deep machine learning, molecular dynamics and experimental studies of liquid Al-Cu-Co alloys

L. V. Kamaeva, E. N. Tsiok, N. M. Chtchelkatchev

Summary: Understanding the correlations between liquids and solids allows us to predict the thermodynamic parameter range favorable for the formation of intriguing solid phases by studying liquids. In this study, we experimentally and theoretically investigated an Al-Cu-Co system within different composition ranges, and identified high-temperature solid phases. Our findings demonstrated the correlation between the boundaries of different solid phases and undercooling and viscosity in the concentration area.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Surface adsorption of adenine on pristine and B/N/O/P-doped coronene as a biosensing substrate for DNA detection- DFT study

R. Aneesh Kumar, S. Jamelah Al-Otaibi, Y. Sheena Mary, Y. Shyma Mary, Nivedita Acharjee, Renjith Thomas, Renjith Raveendran Pillai, T. L. Leena

Summary: In this study, the interactions between doped and pristine coronenes and adenine nucleobases were investigated using Density Functional Theory. The optimal configurations, adsorption energies, charge transfer, and electrical properties of each complex were calculated. It was found that doped coronene had stronger adsorption strength and charge transfer compared to pristine coronene. The stability of the complexes was attributed to non-covalent interactions in the interactive region. The change in electrical conductivity of coronenes after adsorption suggested their sensitivity towards DNA bases. The predicted energy gap and prolonged recovery time for adenine-coronene configurations indicated the potential application of pristine/doped coronene in DNA detection.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Study on the fine particles deposition law in the bronchus of miners affected by dust pollution in the anchor excavation working environment

Gang Zhou, Yongwei Liu, Biao Sun, Zengxin Liu, Cuicui Xu, Rulin Liu, Qi Zhang, Yongmei Wang

Summary: The CFD-DEM method was used to simulate the dust deposition pattern in the bronchus of anchor digging drivers, revealing the highest dust concentration in the vortex region of the working face. The study also found a positive correlation between dust particle diameter and bronchial deposition rate, and a negative correlation with alveolar deposition rate.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Unveiling regularities of B12N12-X nanocages as a drug delivery vehicle for the nitrosourea: The influence of periods and groups

Yan Zhang, Yafei Luo, Lingkai Tang, Mingyan E, Jianping Hu

Summary: This study investigates the effects of different transition metal decorations on B12N12 nanocages on the adsorption properties of nitrosourea drugs using computational methods. The results reveal the presence of weak non-covalent interactions between metals and nanocages, and the interaction between drugs and nanocages plays a significant role in drug adsorption. Compared to free drugs, the adsorption of drugs on nanocages can facilitate electron transfer, reduce energy gaps and chemical hardness, indicating activity at the target site.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Aromatic aldehyde oxidation by hexacyanoferrate(III) catalyzed by Ru(VI) in alkaline medium

C. I. Alcolado, J. Poblete, L. Garcia-Rio, E. Jimenez, F. J. Poblete

Summary: In this study, the selective oxidation of aromatic aldehydes was investigated using Ru(VI) as a catalyst and hexacyanoferrate (III) as a cooxidant in an alkaline medium. The reaction mechanism involves complex reaction orders for the oxidant and the aromatic aldehyde, while the reaction order for Ru(VI) is one. The proposed mechanism includes two catalytic cycles and the formation and decomposition of complexes. Quantitative structure-activity relationship analysis showed that deactivating groups in the para-position enhance the process.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Effective removal of hypnotic drug from the aqueous medium through adsorption on graphene oxide magnetic derivatives

Inez A. Barbieri, Marcos L. S. Oliveira, Franciele S. Bruckmann, Theodoro R. Salles, Leonardo Zancanaro, Luis F. O. Silva, Guilherme L. Dotto, Eder C. Lima, Mu. Naushad, Cristiano R. Bohn Rhoden

Summary: This study evaluated the adsorption of zolpidem on magnetic graphene oxide and synthesized magnetic graphene oxide adsorbents for zolpidem removal. The best magnetic nanoadsorbent was found to have a removal percentage of 87.07% at specific pH and temperature conditions. The results suggest that the removal of zolpidem is related to the surface chemistry of the adsorbent rather than the surface area of graphene oxide. The adsorbent showed excellent adsorption efficiency and magnetic behavior, making it a promising material for removing zolpidem from aqueous solutions.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

A sensitivity analysis on thermal conductivity of Al2O3-H2O nanofluid: A case based on molecular dynamics and support vector regression method

Hongyan Huang, Chunquan Li, Siyuan Huang, Yuling Shang

Summary: This study examines the sensitivity of the thermal conductivity of water-based alumina nanofluids to changes in concentration, sphericity, and temperature. The results show that volume fraction and temperature have a significant impact on the thermal conductivity, while sphericity also needs to be considered. A support vector machine regression model was created to analyze the sensitivity of the thermal conductivity to different parameters. The findings indicate that temperature, sphericity, and volume fraction are the most sensitive variables.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Correction Chemistry, Physical

Canonical partition function and distance dependent correlation functions of a quasi-one-dimensional system of hard disks (vol 387,122572, 2023)

V. M. Pergamenshchik, T. Bryk, A. Trokhymchuk

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Modifying optical nonlinearities of ionic liquid crystal glass by adding gold and carbon nanoparticles

Valentyn Rudenko, Anatolii Tolochko, Svitlana Bugaychuk, Dmytro Zhulai, Gertruda Klimusheva, Galina Yaremchuk, Tatyana Mirnaya, Yuriy Garbovskiy

Summary: This paper reports on the synthesis, structural characterization, spectral and nonlinear-optical properties of glass nanocomposites made of glass forming ionic liquid crystals and nanoparticles. The study reveals that by exciting the nanocomposites within their absorption band, a control over effective optical nonlinearities can be achieved, allowing the modification of the magnitude and sign of the effective nonlinear absorption coefficient. The proposed strategy using metal-alkanoates based glass-forming ionic liquid crystals and nanoparticles shows great potential for the development of nanophotonics and plasmonics technologies.

JOURNAL OF MOLECULAR LIQUIDS (2024)