4.7 Article

High-performance UiO-66/polyimide mixed matrix membranes for ethanol, isopropanol and n-butanol dehydration via pervaporation

Journal

JOURNAL OF MEMBRANE SCIENCE
Volume 531, Issue -, Pages 16-26

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.memsci.2017.02.041

Keywords

UiO-66; Metal organic frameworks; Mixed matrix membranes; Alcohol dehydration; Pervaporation

Funding

  1. National Research Foundation of Singapore (NRF) [R-279-000-311-281]

Ask authors/readers for more resources

We have designed novel mixed matrix membranes (MMMs) consisting of UiO-66 nanoparticles and 6FDA-HAB/DABA polyimide for the dehydration of ethanol, isopropanol and n-butanol via pervaporation. The UiO-66 nanoparticles have a particle size of around 100 nm. They can be evenly dispersed in the 6FDA-HAB/DABA polyimide matrix without visible agglomeration even at the highest 30 wt% loading. The incorporation of UiO-66 into the 6FDA-HAB/DABA polyimide not only significantly enhances both free-volume radius and fractional free volume as confirmed by positron annihilation lifetime spectroscopy but also remarkably improves the normalized flux of MMMs for the dehydration of ethanol/water, isopropanol/water and n-butanol/water systems. The MMMs show excellent separation efficiency for the dehydration of isopropanol and n-butanol. At the highest UiO-66 loading of 30 wt%, the MMMs have the water permeability of 0.329 and 0.292 mg m(-1) h(-1) kPa(-1) and mole-based selectivity of 2209 and 14214 respectively for isopropanol/water and n-butanol/water systems, outperforming most literature data. These experimental results strongly suggest the newly developed UiO-66/polyimide MMMs have great potential for isopropanol and n-butanol dehydration via pervaporation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Clinical Neurology

Risk Factors for Amputation in the Surgical Treatment of Hemophilic Osteoarthropathy: A 20-Year Single-Center Report

Yiming Xu, Bin Feng, Wei Zhu, Yingjie Wang, Xisheng Weng

Summary: This study reviewed the records of patients who underwent amputations in the surgical treatment of Hemophilic Osteoarthropathy (HO) and summarized the risk factors, aiming to provide references for surgeons. The findings showed that severe hemophilic pseudotumor, chronic bacterial infection, and coagulation factor inhibitor were potential risk factors for amputation.

PAIN RESEARCH & MANAGEMENT (2022)

Article Surgery

Morphology characters of resected femoral and tibial surface in chinese population: intraoperative anthropometric study in patients at a tertiary hospital

Yiming Xu, Bin Feng, Yulei Dong, Zhibo Zheng, Yanyan Bian, Xisheng Weng

Summary: This study describes the morphological characteristics of resected knee surface in the Chinese population, analyzes the influence of gender and other demographic factors, and validates the effect of ethnic difference by calculating the coverage of Western-designed knee prostheses on Chinese knee surface. The findings suggest that gender is the only confirmed demographic factor influencing knee morphology. Overall, Western-designed prostheses are applicable to the Chinese knee surface, but the ratio of complete coverage is low.

BMC SURGERY (2022)

Article Anesthesiology

Effectiveness of single loading dose of dexmedetomidine combined with propofol for deep sedation of endoscopic retrograde cholangiopancreatography (ERCP) in elderly patients: a prospective randomized study

Mo Chen, Yi Sun, Xueyan Li, Chun Zhang, Xiaochen Huang, Yiming Xu, Chengyong Gu

Summary: The study aimed to investigate the effectiveness of a single loading dose of dexmedetomidine combined with propofol for deep sedation during endoscopic retrograde cholangiopancreatography (ERCP) in elderly patients. The results showed that the cumulative dose of propofol was lower in the dexmedetomidine group compared to the propofol group, and the occurrence of artificial airway interventions and hypotension was also lower in the dexmedetomidine group. Therefore, the combination of a single loading dose of dexmedetomidine with propofol can provide better outcomes for deep sedation in elderly patients during ERCP.

BMC ANESTHESIOLOGY (2022)

Article Computer Science, Information Systems

Explainable Dynamic Multimodal Variational Autoencoder for the Prediction of Patients With Suspected Central Precocious Puberty

Yiming Xu, Xiaohong Liu, Liyan Pan, Xiaojian Mao, Huiying Liang, Guangyu Wang, Ting Chen

Summary: In this study, an artificial intelligence diagnostic system was developed to predict response to the gonadotropin-releasing hormone stimulation test using data from laboratory tests, electronic health records, and imaging reports. The experimental results showed that the developed model outperformed traditional methods and could assist clinicians in making confident diagnoses.

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS (2022)

Review Oncology

Organoids in lung cancer: A teenager with infinite growth potential

Yiming Xu, Wanghao Xin, Chao Yan, Yangfeng Shi, Yeping Li, Yanjie Hu, Kejing Ying

Summary: Despite advancements in lung cancer research, morbidity and mortality rates remain high. Deeper understanding of the molecular mechanisms and novel therapeutic strategies are crucial. Traditional 2D models lack the ability to recapitulate the complexity of patient situations, while newly developed organoids offer a more comprehensive representation and have great potential for breakthroughs in cancer research.

LUNG CANCER (2022)

Article Biochemical Research Methods

Improving artificial intelligence pipeline for liver malignancy diagnosis using ultrasound images and video frames

Yiming Xu, Bowen Zheng, Xiaohong Liu, Tao Wu, Jinxiu Ju, Shijie Wang, Yufan Lian, Hongjun Zhang, Tong Liang, Ye Sang, Rui Jiang, Guangyu Wang, Jie Ren, Ting Chen

Summary: Recent developments in deep learning have shown the potential of using ultrasound images for liver malignancy diagnosis. However, the manual selection and annotation of images by radiologists limit their practical application. In this study, we developed a fully automated artificial intelligence pipeline to detect and diagnose liver masses, utilizing the information from ultrasound videos to improve diagnostic accuracy.

BRIEFINGS IN BIOINFORMATICS (2022)

Correction Cell & Tissue Engineering

Androgen Maintains Intestinal Homeostasis by Inhibiting BMP Signaling via Intestinal Stromal Cells (vol 15, pg 912, 2020)

Xin Yu, Shiguang Li, Yiming Xu, Yundi Zhang, Wenlong Ma, Changchun Liang, Haodong Lu, Yuge Ji, Chuanyong Liu, Dawei Chen, Jingxin Li

STEM CELL REPORTS (2023)

Article Multidisciplinary Sciences

Closed-loop recyclable membranes enabled by covalent adaptable networks for water purification

Bofan Li, Sheng Wang, Xian Jun Loh, Zibiao Li, Tai-Shung Chung

Summary: In the state-of-the-art membrane industry, sustainable and closed-loop recyclable membranes have been innovated using covalent adaptable networks (CANs) with thermally reversible Diels-Alder (DA) adducts. These membranes exhibit excellent mechanical properties, thermal and chemical stabilities, and separation performance comparable to or even higher than nonrecyclable membranes. The used membranes can be depolymerized to remove contaminants and refabricated into new membranes, filling in the gaps in closed-loop recycling and promoting the advancement of sustainable membranes for a green membrane industry.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2023)

Article Engineering, Environmental

Solvent-activated thin-film nanocomposite membranes molecularly tuned with macrocyclic cavities for efficient water desalination and boron removal

Ji Wu, Jie Gao, Shing-Bor Chen, Tai-Shung Chung

Summary: Tuning the permeation properties of TFN membranes through molecular redesign is important for RO desalination performance above the trade-off limit. Activation by organic solvents can boost water permeability but has rejection loss constraints. This study innovatively integrated soluble organic macrocyclic cavitands in the activating solvent to form cavity-bearing nanocomposite structures, which improved water permeability and salt/boron rejection.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Engineering, Environmental

Cyclodextrin-modified layered double hydroxide thin-film nanocomposite desalination membrane for boron removal

Liang Ying Ee, Qipeng Zhao, Jie Gao, Chit Kai Lim, Kai Xue, Sze Yuet Chin, Sam Fong Yau Li, Tai-Shung Chung, Shing Bor Chen

Summary: In this study, facile intercalation and functionalization of β-cyclodextrin onto layered double hydroxides have resulted in the formation of accessible hydroxyl functional groups and anions that exhibit strong sorption and host-guest interaction with boron. The modified LDH was employed to fabricate a polyamide-based thin-film nanocomposite membrane with high salt rejection and water permeance for brackish water, achieving a high boron rejection rate as well. This pioneering study provides valuable insights into the design of brackish water reverse osmosis membranes using macrocyclic molecules and inorganic layered nanomaterials.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Engineering, Environmental

Titanium oxide nanotubes intercalated two-dimensional MXene composite membrane with exceptional antifouling and self-cleaning properties for oil/water separation

Qianqian Zeng, Die Ling Zhao, Liguo Shen, Hongjun Lin, Ning Kong, Lei Han, Cheng Chen, Jiaheng Teng, Chuyang Tang, Tai-Shung Chung

Summary: This study inserted titanium oxide nanotubes into the interlayer space of 2D MXene-based membranes to prepare PMT membranes with excellent performance. The PMT membrane has outstanding hydrophilicity, high retention rates, and ultra-high permeability. It also exhibits excellent antifouling and self-cleaning properties. The incorporation of TiONT increased the interaction energy between the membrane and pollutants, thereby improving its antifouling performance. This novel 2D membrane shows great promise for large-scale continuous separations of oil/water emulsions.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Engineering, Environmental

Synergistic dual-polymer blend membranes with molecularly mixed macrocyclic cavitands for efficient pre-combustion CO2 capture

Fan Feng, Ji Wu, Can Zeng Liang, Martin Weber, Sui Zhang, Tai-Shung Chung

Summary: In this work, scalable polyphenylsulfone (PPSU) and polybenzimidazole (PBI) polymers were blended to create an enhanced polymer matrix that utilized the permeability and mechanical flexibility of PPSU and the selectivity and thermal stability of PBI. Calix[6]arene (CA6) was incorporated into the blend matrix to further enhance the H2/CO2 selectivity. The nanocomposite blend membrane achieved a significantly higher H2/CO2 selectivity with minimal permeability loss, surpassing the Robeson upper bound. This work presents exciting possibilities for designing molecularly mixed composite membranes (MMCMs) with better scalability compared to conventional mixed-matrix designs.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Engineering, Chemical

Inner-selective polyethersulfone-polydimethylsiloxane (PES-PDMS) thin film composite hollow fiber membrane for CO2/N2 separation at high pressures

Baiwang Zhao, Jun Wen Wong, Can Zeng Liang, Ji Wu, Tai-Shung Chung, Sui Zhang

Summary: Researchers developed an inner-selective polyethersulfone-polydimethylsiloxane (PES-PDMS) thin-film composite (TFC) hollow fiber membrane for CO2/N2 separation. The membrane exhibited high CO2 permeance and CO2/N2 selectivity, making it a promising candidate for post-combustion CO2 capture.

SEPARATION AND PURIFICATION TECHNOLOGY (2023)

Article Chemistry, Physical

Ruthenium single-atom modulated Ti3C2Tx MXene for efficient alkaline electrocatalytic hydrogen production

Yu Zou, Seyedeh Alieh Kazemi, Ge Shi, Junxian Liu, Yuwei Yang, Nicholas M. Bedford, Kaicai Fan, Yiming Xu, Huaiqin Fu, Mengyang Dong, Mohammad Al-Mamun, Yu Lin Zhong, Huajie Yin, Yun Wang, Porun Liu, Huijun Zhao

Summary: Ru-SAs anchored on Ti3C2Tx exhibit excellent HER activity, especially under high current densities. Experimental and theoretical studies reveal that the superior HER electrocatalytic activity of Ru-SA@Ti3C2Tx results from the Ru-SAs enhanced H2O adsorption and dissociation, and promoted H-2 formation.

ECOMAT (2023)

Review Chemistry, Physical

Polybenzimidazoles (PBIs) and state-of-the-art PBI hollow fiber membranes for water, organic solvent and gas separations: a review

Kai Yu Wang, Martin Weber, Tai-Shung Chung

Summary: PBI has been explored for fabricating HFMs for liquid and gas separations due to its chemical resistance and stability, enhancing separation performance. State-of-the-art technologies can fabricate macrovoid-free PBI HFMs, and chemically modified PBI membranes, PBI blended membranes, and PBI composite membranes can improve performance.

JOURNAL OF MATERIALS CHEMISTRY A (2022)

Article Engineering, Chemical

r-HGO/MXene composite membrane with enhanced permeability and rejection performance for water treatment

Jiawei Hou, Shixuan Guo, Nigel Graham, Wenzheng Yu, Kening Sun, Ting Liu

Summary: A novel 2D composite membrane based on r-HGO and MXene materials was developed, demonstrating exceptional performance for water treatment in terms of permeability, pollutant rejection, and physical stability. The optimization of preparation conditions and material proportions can result in high water flux and efficient removal of pollutants.

JOURNAL OF MEMBRANE SCIENCE (2024)

Article Engineering, Chemical

Designing a multifunctional TFC membrane with improved permeability and anti-biofouling performance using zwitterionic, quaternary ammonium, and fluorinated materials

Rui Gao, Caihong Liu, Andreia F. Faria, Qiang He, Chun Yang, Jun Ma

Summary: A novel copolymer architecture has been developed to address biofouling concerns in thin-film composite (TFC) membranes by integrating anti-fouling, bactericidal, and fouling-release functions. The multifunctional membrane demonstrates promising anti-adhesive properties, self-cleaning ability, and high flux recovery rate.

JOURNAL OF MEMBRANE SCIENCE (2024)

Article Engineering, Chemical

Defect-free asymmetric Matrimid® gas separation membranes using dihydrolevoglucosenone (Cyrene™) as a greener polar aprotic solvent than traditional solvents

Alexander T. Bridge, Noah P. Wamble, Matthew S. Santoso, Joan F. Brennecke, Benny D. Freeman

Summary: This study demonstrates the reproducible preparation of high-flux defect-free asymmetric gas separation membranes using Cyrene(TM) as a majority dope formulation component. By adjusting the volume ratios of Cyrene(TM) and THF, as well as the concentrations of Matrimid(R) and the dry step time, optimal membrane performance is achieved.

JOURNAL OF MEMBRANE SCIENCE (2024)

Article Engineering, Chemical

Nanofiber composite ultrafiltration membrane functionalized with cross-linked β-cyclodextrin for steroid hormone micropollutant removal

Alessandra Imbrogno, Han Ya Lin, Babak Minofar, Andrea Iris Schaefer

Summary: In this study, a composite nanofiber membrane containing cross-linked beta-cyclodextrin-epichlorohydrin was prepared and evaluated for the removal of steroid hormones. The results showed that the membrane had high adsorption capacity and the ability to form a specific inclusion complex interaction with the hormones, indicating its potential application in hormone removal.

JOURNAL OF MEMBRANE SCIENCE (2024)

Article Engineering, Chemical

Modeling the flux of volatile fatty acid in a membrane distillation with the effect of pH

Bora Shin, Jaewon Shin, Yanuar Chandra Wirasembada, Ki Young Park, Jinwoo Cho

Summary: This study develops a mathematical model to estimate the initial flux of volatile fatty acids in the direct contact membrane distillation process. It identifies the parameters affecting the flux and their relationship with pH.

JOURNAL OF MEMBRANE SCIENCE (2024)

Article Engineering, Chemical

Plasma-engineered GQD-inorganic membranes with tunable interactions for ultrahigh-efficiency molecular separations

Yi-Jui Yeh, Jr Rong Liou, Wei Lin, Kuo-Lun Tung, Wei-Hung Chiang

Summary: This study demonstrates an effective plasma engineering method to create nitrogen-doped graphene quantum dot (NGQD)-inorganic nanocomposites for tunable molecular separation. The composite materials show high separation efficiency and controllable nanopore structures, making them potentially valuable for various applications.

JOURNAL OF MEMBRANE SCIENCE (2024)

Article Engineering, Chemical

Water vapor sorption and transport in carbon molecular sieve membranes

Horacio Lopez-Marques, Kristofer L. Gleason, Manuel Aguilar-Vega, Rita Sulub-Sulub, J. Ehren Eichler, Hyeonji Oh, C. Buddie Mullins, Benny D. Freeman, Manish Kumar

Summary: In this study, water transport properties in Carbon Molecular Sieve (CMS) membranes were investigated. It was found that membranes synthesized at different pyrolysis temperatures exhibited varying water permeabilities. Compared to other polymeric materials, CMS membranes showed high water permeability, indicating potential for dehydration applications.

JOURNAL OF MEMBRANE SCIENCE (2024)

Article Engineering, Chemical

Vinyl-addition polynorbornenes with glycerol and diethylene glycol moieties: Synthesis and structure-property study

Dmitry A. Alentiev, Roman Yu. Nikiforov, Marina A. Rudakova, Danil P. Zarezin, Maxim A. Topchiy, Andrey F. Asachenko, Nikolay A. Belov, Maxim Bermeshev

Summary: A series of new norbornene-type monomers containing linear and branched substituents were synthesized, and robust thin membranes were prepared by vinyl-addition polymerization. Gas separation performance for the synthesized polymers was evaluated, and the structure of substituent side chains was found to significantly affect gas permeability and CO2 facilitated transport.

JOURNAL OF MEMBRANE SCIENCE (2024)

Article Engineering, Chemical

Hydrogel electrolyte membrane with regulated pore effect to stabilize zinc anode in aqueous zinc-ion batteries

Lei Yan, Qi Zhang, Ze Zhang, Gui-Jie Li, Yi Jin, Xin-Lin Zhang, Yan-Yun Sun

Summary: In this study, a continuous, stable and fast ion transport channel was established through in-situ guided cross-linking of zinc alginate hydrogels on a porous membrane, overcoming the negative pore effect and effectively inhibiting the dendrite growth of zinc anodes and interfacial side reactions.

JOURNAL OF MEMBRANE SCIENCE (2024)

Article Engineering, Chemical

Fabrication of an ultra-thin and ordered SPEEK proton exchange membrane by a Langmuir-Blodgett self-assembly process

Yuqing Zhang, Ailing Zhang, Huiyang He, Yuting Fan, Yongjiang Li, Song Wang, Sanxi Li

Summary: The Langmuir-Blodgett self-assembly process is used to create an ordered SPEEK membrane, which enhances the proton conductivity by three times compared to conventional solution casting method.

JOURNAL OF MEMBRANE SCIENCE (2024)

Article Engineering, Chemical

Estimating Gas Sorption In Polymeric Membranes From The Molecular Structure: A Machine Learning Based Group Contribution Method For The Non-Equilibrium Lattice Fluid Model (ML-GC-NELF)

Hasan Ismaeel, David Gibson, Eleonora Ricci, Maria Grazia De Angelis

Summary: In this study, a machine learning-based group contribution method (ML-GC) was developed to predict pure polymer parameters and successfully applied to predict gas solubility and gas solubility isotherms in glassy polymeric membranes. The model showed satisfactory performance on a small dataset, but has the potential to provide more accurate predictions for a wider range of polymers as more data becomes available.

JOURNAL OF MEMBRANE SCIENCE (2024)

Article Engineering, Chemical

Angular vibrations for fouling control during ultrafiltration of microalgae in a spiral wound module

Yi Ji, Yu Sun, Huilin Li, Qiang Fu, Yan Zhang

Summary: Previous studies have shown that vibration- or rotation-based techniques can effectively mitigate fouling during membrane filtration. However, it is difficult to incorporate these techniques with spiral wound modules (SWMs) widely used in water and wastewater treatment. This study developed a prototype membrane system to accommodate angular vibrations with a modified SWM, and experimental results showed that applying angular vibrations can effectively control algal fouling in an SWM with lower energy consumption compared to traditional methods.

JOURNAL OF MEMBRANE SCIENCE (2024)

Article Engineering, Chemical

Polyphenol-coated hollow fiber system for energy-efficient dehumidification in air-conditioning

Lakshmeesha Upadhayaya, Abaynesh Yihdego Gebreyohannes, Muhammad Wakil Shahzad, Usman T. Syed, Sandra L. Aristizabal, Radoslaw Gorecki, Suzana P. Nunes

Summary: Increasing temperatures worldwide pose a significant health risk, exacerbated by high humidity. Conventional air conditioners contribute heavily to carbon dioxide emissions, with dehumidification being a major factor. Membrane-based dehumidification system offers energy efficiency and non-toxic water vapor removal. This study demonstrates a membrane dehumidification system with polymeric hollow fibers coated with a green polyphenol coating, showing remarkable water vapor transport rate and selectivity. Long-term testing reveals minimal decline in vapor transport and a 4-5 times higher coefficient of performance (COP) compared to conventional dehumidifiers, making it a highly competitive, energy-saving device with reduced emissions and a smaller footprint.

JOURNAL OF MEMBRANE SCIENCE (2024)

Article Engineering, Chemical

A facile method to fabricate anti-fouling nanofiltration membrane with aminated lignin

Zhengzhong Zhou, Xue Zhu, Yi Yuan, Shaoqiang Wang, Xiaoshan Meng, Taoli Huhe, Qian Wang

Summary: In this study, lignin, a biomass material, was chemically modified and utilized in the interfacial polymerization process to improve the performance of nanofiltration membranes. The modified membranes showed enhanced hydrophilicity and anti-fouling properties, and the optimization of membrane pore size increased permeability. The study also demonstrated the potential application of the membranes in biogas slurry valorization.

JOURNAL OF MEMBRANE SCIENCE (2024)