4.6 Article

Optical and structural properties of Mg doped ZnO thin films by chemical bath deposition method

Ask authors/readers for more resources

The chemical bath deposition method has often been employed to successfully deposit pure and Mg doped ZnO thin films on a glass substrate. The impact of Mg creates a strained stress in ZnO films affecting its structural and optical properties. XRD patterns revealed that all thin films possess a polycrystalline hexagonal wurtzite structure and Mg doped ZnO thin films (002) plane peak position is shifted towards a lower angle due to Mg doping. From the SEM image, it is understood that the Mg doped ZnO thin films are uniformly coated and are seen as dense rods like pillers deposited over the film. The energy dispersive X-ray analysis confirmed the presence of Mg in doped ZnO thin films. The transmittance spectra exhibit that it is possible for Mg doping to enhance ZnO thin films. The optical energy gap of the films was assessed by applying Tauc's law and it is observed to show an increasing tendency with an improvement in Mg doping concentrations. The optical constants such as reflectance, index of refraction, extinction coefficient and optical conductivity are determined by using transmission at normal incidence of light by using wavelength range of 200-800 nm. In PL spectra, the band edge emission shifted to the blue with increasing amount of Mg doping.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available