4.7 Article

Effect of Solution Annealing on Microstructure and Mechanical Properties of a Ni-Cr-W-Fe Alloy

Journal

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
Volume 33, Issue 11, Pages 1300-1307

Publisher

JOURNAL MATER SCI TECHNOL
DOI: 10.1016/j.jmst.2016.06.026

Keywords

Ni-Cr-W-Fe alloy; Solution annealing; Grain boundaries carbides; Precipitate free zones; Mechanical properties

Ask authors/readers for more resources

The effect of solution annealing on the microstructure and mechanical properties of a Ni-Cr-W-Fe alloy developed for advanced 700 degrees ultra-supercritical power plants was investigated. Test samples in this study were subjected to different solution treatments and the same aging treatment (at760 degrees C for 1 h). When solution annealing temperature was elevated from 1020 degrees C to 1150 degrees C, the stress-rupture life at 750 degrees C/320MPa was increased from 60 h to 300 h, the stress-rupture elongation was enhanced from 12% to 17%, and the elongation of the tensile at 750 degrees C was improved from 11% to 24%. All tensile and stress-rupture samples displayed an intergranular dimple mixed fracture. Intergranular micro-cracks had a great relationship with the morphology of grain boundary carbides. Most carbides retained the morphology of globular shape and continuous thin plate. After tensile and stress-rupture tests, a few carbides were converted into lamellar. The results showed that intergranular micro-cracks were easier to form at continuous thin plate carbides than at globular shape carbides. Lamellar carbides hardly caused the nucleation of micro-cracks. Besides, grain boundaries sliding and elements diffusion during stressrupture tests led to the formation of precipitate free zones, which accelerated the extension of microcracks and influenced the stress- rupture life. (C) 2016 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available