4.7 Article

In-situ mobilization and transformation of iron oxides-adsorbed arsenate in natural groundwater

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 321, Issue -, Pages 228-237

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2016.09.021

Keywords

Arsenate; Iron oxides; Reductive dissolution; Mineral transformation

Funding

  1. National Natural Science Foundation of China [41672225, 41222020]
  2. Fundamental Research Funds for the Central Universities [2652013028]
  3. Fok Ying-Tung Education Foundation, China [131017]

Ask authors/readers for more resources

Although reductive dissolution of Fe(III) oxides has been well accepted for As mobilization in alluvial aquifers, the key factors controlling this process are poorly understood. Arsenic(V)-adsorbing ferrihydrite, goethite and hematite were used to examine in-situ mobilization and transformation of adsorbed As(V) and Fe(III) oxides. In the Hetao basin, seven wells with wide ranges of groundwater As were selected to host As(V)-Fe(III) oxides sand. During 80 d experiments, As was firstly desorbed and then released via reductive dissolution of iron oxide from ferrihydrite, while only desorption was observed from goethite/hematite sand. Desorbed As was predominantly controlled by groundwater HCO3- and DOC, while reductive dissolution-related As release was mainly regulated by ORP values, DOC and Fe(II) concentrations. Mineral transformation from ferrihydrite to lepidocrocite and goethite/or mackinawite would also contribute to As release. Arsenic species was transformed from As(V) to As(III) on ferrihydrite, but remained unchanged on goethite and hematite. Arsenic partition between As-Fe(III) oxide sand and real groundwater ranged between 0.012 and 0.102 L/g. Kd-sand between As-goethite sand/As-hematite sand and groundwater fell within the ranges observed between sediments and groundwater. This study suggests that As desorption, reductive dissolution and mineral transformation of ferrihydrite would be the major processes controlling As mobility. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available