4.6 Article

Effect of In Vitro Digestion on the Total Antioxidant Capacity and Phenolic Content of 3 Species of Oregano (Hedeoma patens, Lippia graveolens, Lippia palmeri)

Journal

JOURNAL OF FOOD SCIENCE
Volume 82, Issue 12, Pages 2832-2839

Publisher

WILEY
DOI: 10.1111/1750-3841.13954

Keywords

Hedeoma patens; in vitro digestion; Lippia graveolens; Lippia palmeri; polyphenols

Funding

  1. Mexican Consejo Nacional de Ciencia y Tecnologia (CONACyT) [252416, 391880]

Ask authors/readers for more resources

Oregano phenolic compounds have been studied for their anti-inflammatory properties. Nonetheless, after ingestion, the gastrointestinal environment can affect their antioxidant stability and thus their bioactive properties. To evaluate the effect of in vitro gastrointestinal (GI) digestion on the phenolic compounds of 3 species of oregano (Hedeoma patens, Lippia graveolens, and Lippia palmeri), the total reducing capacity, total flavonoid content, and antioxidant capacity were evaluated before and after in vitro GI digestion. In addition, the phenolic compounds of the 3 oregano species were identified and quantified by UPLC-PDA before and after in vitro GI digestion. It was shown that the reducing capacity, flavonoid content and antioxidant capacity were affected by the GI digestion process. Moreover, the phenolic compounds identified were apigenin-7-glucoside, scutellarein, luteolin, luteolin-7-glucoside, phloridzin and chlorogenic acid, and their levels were affected by the in vitro GI process. Our results showed that the phenolic compounds from these 3 species of oregano are affected by the in vitro digestion process, and this effect is largely attributable to pH changes. These changes can modify the bioavailability and further anti-inflammatory activity of oregano phenolics, and thus, further research is needed. Practical ApplicationOregano is a rich source of polyphenols that have shown bioactive properties like anti-inflammatory potential. However, little is known of the gastrointestinal fate of oregano polyphenols which is imperative to fully understand its bioaccessibility. Our results are important to develop new administration strategies which could help protect the antioxidant and anti-inflammatory potential and bioaccessibility of such compounds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available