4.7 Article

Decontamination of Bacillus spores adhered to iron and cement-mortar drinking water infrastructure in a model system using disinfectants

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 187, Issue -, Pages 1-7

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2016.11.024

Keywords

Drinking water; Decontamination; Disinfection; Bacillus; Spores

Funding

  1. U.S. Environmental Protection Agency through its Office of Research and Development [EP-C-09-041]

Ask authors/readers for more resources

Decontamination of Bacillus spores adhered to common drinking water infrastructure surfaces was evaluated using a variety of disinfectants. Corroded iron and cement-mortar lined iron represented the infrastructure surfaces, and were conditioned in a 23 m long, 15 cm diameter (75 ft long, 6 in diameter) pilot-scale drinking water distribution pipe system. Decontamination was evaluated using increased water velocity (flushing) alone at 0.5 m s(-1) (1.7 ft s(-1)), as well as free chlorine (5 and 25 mg L-1), monochloramine (25 mg L-1), chlorine dioxide (5 and 25 mg L-1), ozone (2.0 mg L-1), peracetic acid 25 mg L-1) and acidified nitrite (0.1 mol L-1 at pH 2 and 3), all followed by flushing at 0.3 m s(-1) (1 ft s(-1)). Flushing alone reduced the adhered spores by 0.5 and 2.0 log(10) from iron and cement-mortar, respectively. Log(10) reduction on corroded iron pipe wall coupons ranged from 1.0 to 2.9 at respective chlorine dioxide concentrations of 5 and 25 mg L-1, although spores were undetectable on the iron surface during disinfection at 25 mg L-1. Acidified nitrite (pH 2, 0.1 mol L-1) yielded no detectable spores on the iron surface during the flushing phase after disinfection. Chlorine dioxide was the best performing disinfectant with >3.0 log(10) removal from cement-mortar at 5 and 25 mg L-1. The data show that free chlorine, monochloramine, ozone and chlorine dioxide followed by flushing can reduce adhered spores by > 3.0 log(10) on cement-mortar. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available