4.3 Article

Rheological properties of hexadecyl dimethyl amine modified carboxymethyl hydroxyethyl cellulose solutions and its gelling process

Journal

JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY
Volume 39, Issue 1, Pages 138-142

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/01932691.2017.1300911

Keywords

Cellulose; gelling process; modification; rheological properties

Funding

  1. National High Technology Research and Development Program 863 Project of China [2013AA064801]

Ask authors/readers for more resources

To obtain a new fracturing fluid viscosifier, hexadecyl dimethyl amine was used to modify carboxymethyl hydroxyethyl cellulose (CMHEC) to obtain a product called HD-CMHEC with high viscosity. The rheological properties of HD-CMHEC solutions and CMHEC solutions were studied. For the concentration of 0.3%, the viscosity of CMHEC and HD-CMHEC solutions is, respectively, 19.0 mPa.s and 73.6 mPa.s, respectively. The viscosity of HD-CMHEC solution increases 2.8 times than before. The thixotropy and viscoelasticity of HD-CMHEC solutions become stronger. As a typical viscoelastic fluid, HD-CMHEC solutions show better rheological performance than that of CMHEC solutions. The gelling process of HD-CMHEC solutions under steady shear was studied in detail. The concentrations of HD-CMHEC solutions, shear rates, and crosslinking agent were investigated. Viscosity versus time curves during the crosslinking process were obtained. The four-parameter crosslinking rheokinetics equation can describe the gelling process of HD-CMHEC solutions under different conditions well. Study on the gelling process of HD-CMHEC solutions under steady shear contributes to the understanding of gel formation, and provides theoretical guidance for exploration and exploitation of the system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available