4.8 Article

Amelioration of atherosclerotic inflammation and plaques via endothelial adrenoceptor-targeted eNOS gene delivery using redox-sensitive polymer bearing L-arginine

Journal

JOURNAL OF CONTROLLED RELEASE
Volume 262, Issue -, Pages 72-86

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconrel.2017.07.019

Keywords

Redox-sensitive polymeric nanoparticles; L-arginine; Targeted delivery; Endothelial nitric oxide synthase; Inflammation; Atherosclerosis

Funding

  1. National Research Foundation of Korea [2014049587, 2015003019]
  2. Brain Korea 21 plus program [22A20130011095]

Ask authors/readers for more resources

Endothelial dysfunction combined with inflammation leads to atherosclerosis. Endothelium-specific delivery of therapeutic agents at the cellular level-specifically in vivo-is still a difficult task for proper management of atherosclerosis. We designed a redox-sensitive poly(oligo-L-arginine) (rsPOLA) playing dual roles as an endothelium alpha-2 adrenoceptors(alpha-2ARs)-targeted gene carrier and as a substrate for endothelial nitric oxide synthase (eNOS). Overexpression of alpha-2ARs on atherosclerotic endothelial cells was confirmed and the eNOS/rsPOLA nanoplexes following systemic injection demonstrated to 1) enhance eNOS gene delivery into endothelial cells via alpha-2ARs/L-arginine specific binding, 2) increase intracellular level of nitric oxide, 3) suppress inflammatory response in endothelium and finally 4) reduce atherosclerotic plaque in a Ldlr(-/-) atherosclerotic mouse model. Among the tested nanoplexes [ eNOS/rsPOLA, eNOS/{poly(oligo-D-arginine), rsPODA} and eNOS/(racemic mixture, rsRM)], eNOS/rsPOLA reduced atherosclerotic inflammation most effectively as we hypothesized. Current treatment strategy provides strong potential for further development of a gene therapeutic system to ameliorate inflammation and progressive atherosclerotic plaques.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Meeting Abstract Chemistry, Multidisciplinary

Development of biodegradable electrospun nanofibers containing 17-AAG

Jee Young Chung, Hyun Lin Lee, Qurrat Ul Ain, Yoon Sung Song, Yong-Hee Kim

JOURNAL OF CONTROLLED RELEASE (2015)

Article Chemistry, Multidisciplinary

Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN

Qurrat Ul Ain, Jee Young Chung, Yong-Hee Kim

JOURNAL OF CONTROLLED RELEASE (2015)

Article Chemistry, Medicinal

Effects of protein transduction domain (PTD) selection and position for improved intracellular delivery of PTD-Hsp27 fusion protein formulations

Qurrat Ul Ain, Jong Hwan Lee, Young Sun Woo, Yong-Hee Kim

ARCHIVES OF PHARMACAL RESEARCH (2016)

Article Chemistry, Multidisciplinary

RNAi-mediated silencing of TNF-α converting enzyme to down-regulate soluble TNF-α production for treatment of acute and chronic colitis

Yoonsung Song, Ye-Ram Kim, So Mi Kim, Qurrat Ul Ain, Kiseok Jang, Chul-Su Yang, Yong-Hee Kim

JOURNAL OF CONTROLLED RELEASE (2016)

Review Chemistry, Multidisciplinary

Mononuclear phagocytes as a target, not a barrier, for drug delivery

Seok-Beom Yong, Yoonsung Song, Hyung Jin Kim, Qurrat Ul Ain, Yong-Hee Kim

JOURNAL OF CONTROLLED RELEASE (2017)

Article Medicine, Research & Experimental

Enhanced Systemic Anti-Angiogenic siVEGF Delivery Using PEGylated Oligo-D-arginine

Jee Young Chung, Qurrat Ul Ain, Hyun Lin Lee, So-Mi Kim, Yong-Hee Kim

MOLECULAR PHARMACEUTICS (2017)

Article Polymer Science

Regeneration of Anti-Hypoxic Myocardial Cells by Transduction of Mesenchymal Stem Cell-Derived Exosomes Containing Tat-Metallothionein Fusion Proteins

Qurrat Ul Ain, Young Sun Woo, Jee Young Chung, Yong-Hee Kim

MACROMOLECULAR RESEARCH (2018)

Article Biochemistry & Molecular Biology

Targeted delivery of CRISPR interference system against Fabp4 to white adipocytes ameliorates obesity, inflammation, hepatic steatosis, and insulin resistance

Jee Young Chung, Qurrat Ul Ain, Yoonsung Song, Seok-Beom Yong, Yong-Hee Kim

GENOME RESEARCH (2019)

Review Biotechnology & Applied Microbiology

Gene Delivery to the Skin - How Far Have We Come?

Qurrat Ul Ain, Estefania V. R. Campos, Ariel Huynh, Dominik Witzigmann, Sarah Hedtrich

Summary: Gene therapies are powerful in treating diseases, but face challenges in skin disorders due to the unique barrier properties of human skin that limit the efficient delivery of nucleic acid payloads. Delivery strategies are identified as the major obstacle in fully utilizing the potential of gene therapies for various human diseases, not just skin disorders.

TRENDS IN BIOTECHNOLOGY (2021)

Editorial Material Nanoscience & Nanotechnology

COVID-19 highlights the model dilemma in biomedical research

Partho Protim Adhikary, Qurrat Ul Ain, Andreas Christian Hocke, Sarah Hedtrich

Summary: Scientists globally face challenges in finding appropriate animal models for studying SARS-CoV-2 infections due to interspecies-related differences, but human-based models like micro-engineered multi-organs-on-chip may provide a solution.

NATURE REVIEWS MATERIALS (2021)

Review Chemistry, Multidisciplinary

Polymer mechanochemistry in drug delivery: From controlled release to precise activation

Zhiyuan Shi, Yong Hu, Xin Li

Summary: Controlled drug delivery systems that can respond to mechanical force offer a unique solution for on-demand drug activation and release. Among various mechanical stimuli, ultrasound (US) has advantages in achieving spatiotemporally controlled drug release. Traditional US-triggered drug release relies on heat-induced phase transitions or chemical transformations, while the cutting-edge approach of Sonopharmacology leverages polymer mechanochemistry. The remaining challenges and potential future directions in this field are also discussed.

JOURNAL OF CONTROLLED RELEASE (2024)

Article Chemistry, Multidisciplinary

Co-delivery of drugs by adhesive transdermal patches equipped with dissolving microneedles for the treatment of rheumatoid arthritis

Lijie Zheng, Yuanzheng Chen, Xun Gu, Yingying Li, Hanqing Zhao, Wenjun Shao, Tao Ma, Chuanbin Wu, Qingqing Wang

Summary: In this study, a novel dosage form consisting of dissolving microneedles and an adhesive transdermal patch was developed for the treatment of rheumatoid arthritis. In vitro and in vivo experiments demonstrated that the combination of drugs delivered by this dosage form effectively reduced joint inflammation and damage.

JOURNAL OF CONTROLLED RELEASE (2024)

Article Chemistry, Multidisciplinary

Mucoadhesive chitosan microcapsules for controlled gastrointestinal delivery and oral bioavailability enhancement of low molecular weight peptides

Kyungjik Yang, Hwa Seung Han, Seung Hwan An, Kyung Hoon Park, Keonwook Nam, Shinha Hwang, Yuyeon Lee, Sung Yeon Cho, Taehyung Kim, Deokyeong Choe, Sang Won Kim, Wonkyu Yu, Hyunah Lee, Jiyong Park, Sangguan You, Dong- Gyu Jo, Ki Young Choi, Young Hoon Roh, Jae Hyung Park

Summary: This study developed CP-loaded CS microcapsules to enhance the oral bioavailability of CP through controlled gastrointestinal delivery. The optimized microcapsules exhibited desirable physicochemical properties, showed anti-photoaging effects via antioxidant activity, and achieved controlled release in the gastrointestinal tract. This research provides a simple and economical approach for enhancing the oral bioavailability of CP for customized bioactive compound administration.

JOURNAL OF CONTROLLED RELEASE (2024)

Article Chemistry, Multidisciplinary

Pressure-sensitive multivesicular liposomes as a smart drug-delivery system for high-altitude pulmonary edema

Huiyang Li, Shuo Liu, Wenjin Dai, Bingmei Yao, Yong Zhou, Sujia Si, Hairong Yu, Riguang Zhao, Fang Jin, Liqun Jiang

Summary: Changes in bodily fluid pressures are crucial in diseases like high-altitude pulmonary edema (HAPE). Researchers have developed hydrostatic pressure-sensitive multivesicular liposomes (PSMVLs) that can release drugs in response to pressure changes, with potential applications in HAPE treatment. Animal experiments showed that this system provides better protection for lung tissues and respiratory function, reducing the occurrence of pulmonary edema.

JOURNAL OF CONTROLLED RELEASE (2024)

Article Chemistry, Multidisciplinary

Biofunctional coacervate-based artificial protocells with membrane-like and cytoplasm-like structures for the treatment of persistent hyperuricemia

Qian Hu, Hongbing Lan, Yinmei Tian, Xiaonan Li, Mengmeng Wang, Jiao Zhang, Yulin Yu, Wei Chen, Li Kong, Yuanyuan Guo, Zhiping Zhang

Summary: Coacervate droplets formed through liquid-liquid phase separation have potential as delivery vesicles for therapeutics. However, their lack of physiological stability and membranes are challenges. In this study, polylysine-polynucleotide complex coacervate droplets with favorable stability were formulated to concentrate molecules and nanoparticles. Phospholipid membranes were further coated on the droplets to create coacervate-based artificial protocells (ArtPC) with membrane-like structures. These biofunctional ArtPC effectively reduced blood uric acid levels and prevented renal injuries.

JOURNAL OF CONTROLLED RELEASE (2024)

Article Chemistry, Multidisciplinary

Lipid-like gemcitabine diester-loaded liposomes for improved chemotherapy of pancreatic cancer

Xiaowei Wang, Hongwei Lu, Fang Luo, Dan Wang, Apeng Wang, Xuelei Wang, Wenkai Feng, Xiaobo Wang, Jiayi Su, Mingliang Liu, Guimin Xia

Summary: Four novel lipid-like GEM diesters were synthesized and encapsulated into liposomes to improve the antitumor efficacy of Gemcitabine. The liposomes loaded with dimyristoyl GEM (LipodmGEM) showed enhanced cellular uptake, improved inhibition of cell migration, and a greatly extended half-life compared to free Gemcitabine. LipodmGEM successfully enriched the drug in the tumor and exhibited excellent anticancer efficacy in vivo with negligible systemic toxicity.

JOURNAL OF CONTROLLED RELEASE (2024)

Article Chemistry, Multidisciplinary

Microenvironment responsive charge-switchable nanoparticles act on biofilm eradication and virulence inhibition for chronic lung infection treatment

Pengyu Li, Jieyi Pan, Yating Dong, Yingying Sun, Yalong Wang, Kang Liao, Yili Chen, Xin Deng, Shihui Yu, Haiyan Hu

Summary: Chronic pulmonary infection caused by Pseudomonas aeruginosa is a serious public health problem with high mortality rates. In this study, infection-microenvironment responsive nanoparticles were developed to eradicate biofilms and inhibit virulence. These nanoparticles showed promising results in treating chronic pulmonary infections.

JOURNAL OF CONTROLLED RELEASE (2024)

Article Chemistry, Multidisciplinary

Quantitative image analysis of intracellular protein translocation in 3-dimensional tissues for pharmacodynamic studies of immunogenic cell death

Yajing Sun, Ze Lu, John A. Taylor, Jessie L. S. Au

Summary: A recent development in cancer chemotherapy is the use of cytotoxics to induce tumor-specific immune response through immunogenic cell death (ICD). This study describes a method that utilizes immunostaining and machine-learning to identify cells with ecto-CRT in intact 3-dimensional tissues. The method was successfully applied to study drug-induced ICD in human bladder cancer.

JOURNAL OF CONTROLLED RELEASE (2024)

Review Chemistry, Multidisciplinary

Strategies for gaseous neuromodulator release in chemical neuroscience: Experimental approaches and translational validation

Rafat Ali, Shantanu Sen, Rohil Hameed, Aamir Nazir, Sandeep Verma

Summary: This review provides a focused overview of emerging strategies for delivering gasotransmitters in a controlled and sustained manner to reestablish neurophysiological homeostasis.

JOURNAL OF CONTROLLED RELEASE (2024)

Article Chemistry, Multidisciplinary

Multifunctional hydrogel for synergistic reoxygenation and chemo/ photothermal therapy in metastatic breast cancer recurrence and wound infection

Jing Chen, Xinyi Zhang, Jinshen Zhang, Zhaoxia Wang, Guilan Zhu, Ming Geng, Jinmiao Zhu, Yajun Chen, Wei Wang, Youcui Xu

Summary: In this study, a multifunctional responsive hydrogel system was developed for synergistic reoxygenation and chemo/photothermal therapy. The hydrogel system showed both therapeutic effects against metastatic breast cancer and wound infection, making it a promising strategy for treating and preventing tumor recurrence and associated wound infection.

JOURNAL OF CONTROLLED RELEASE (2024)

Article Chemistry, Multidisciplinary

Mitochondria-targeted SkQ1 nanoparticles for dry eye disease: Inhibiting NLRP3 inflammasome activation by preventing mitochondrial DNA oxidation

Baoshan Huang, Na Zhang, Xinying Qiu, Rui Zeng, Shuimiao Wang, Mengxia Hua, Qing Li, Kaihui Nan, Sen Lin

Summary: This study revealed that robust ROS can oxidize mitochondrial DNA (ox-mtDNA) and cause its release into the cytosol, resulting in the activation of NLRP3 inflammasome. By using the mitochondria-targeted antioxidant SkQ1 and a novel mitochondria-targeted nanoparticle (SkQ1 NP), it was found that mitochondrial ROS scavenging could in situ inhibit DED-induced mtDNA oxidation and suppress NLRP3-mediated inflammation.

JOURNAL OF CONTROLLED RELEASE (2024)

Article Chemistry, Multidisciplinary

An injectable carrier for spatiotemporal and sequential release of therapeutic substances to treat myocardial infarction

Wenqi Liu, Cheng Hu, Linyu Long, Shuyi He, Wen Zhang, Zhicun Wang, Li Yang, Yunbing Wang

Summary: Myocardial infarction is the leading cause of cardiovascular mortality, and current treatment methods have limitations. This study developed a smart carrier that can release different therapeutic substances for different pathological processes, effectively improving cardiac function, promoting cardiac repair, and preventing ventricular remodeling.

JOURNAL OF CONTROLLED RELEASE (2024)