4.7 Article

Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations

Journal

JOURNAL OF COMPUTATIONAL PHYSICS
Volume 350, Issue -, Pages 992-1011

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2017.08.064

Keywords

Fractional diffusion equations; CN-WSGD scheme; Spectral analysis; GLT theory; Multigrid methods

Funding

  1. Italian grant MIUR - PRIN [N. 2012MTE38N]
  2. GNCS-INDAM (Italy)

Ask authors/readers for more resources

Fractional diffusion equations (FDEs) are a mathematical tool used for describing some special diffusion phenomena arising in many different applications like porous media and computational finance. In this paper, we focus on a two-dimensional space-FDE problem discretized by means of a second order finite difference scheme obtained as combination of the Crank-Nicolson scheme and the so-called weighted and shifted Grunwald formula. By fully exploiting the Toeplitz-like structure of the resulting linear system, we provide a detailed spectral analysis of the coefficient matrix at each time step, both in the case of constant and variable diffusion coefficients. Such a spectral analysis has a very crucial role, since it can be used for designing fast and robust iterative solvers. In particular, we employ the obtained spectral information to define a Galerkin multigrid method based on the classical linear interpolation as grid transfer operator and damped-Jacobi as smoother, and to prove the linear convergence rate of the corresponding two-grid method. The theoretical analysis suggests that the proposed grid transfer operator is strong enough for working also with the V-cycle method and the geometric multigrid. On this basis, we introduce two computationally favourable variants of the proposed multigrid method and we use them as preconditioners for Krylov methods. Several numerical results confirm that the resulting preconditioning strategies still keep a linear convergence rate. (C) 2017 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Mathematics

On the extreme eigenvalues and asymptotic conditioning of a class of Toeplitz matrix-sequences arising from fractional problems

Manuel Bogoya, Sergei Grudsky, Mariarosa Mazza, Stefano Serra-Capizzano

Summary: This article provides a detailed analysis of the spectral features of a Toeplitz matrix-sequence generated by a real-valued function f and investigates the conditioning of the matrices when f is nonnegative. In the context of numerical approximation of distributed-order fractional differential equations (FDEs), a novel type of problem is considered where the matrices have a specific form. Selected numerical experiments are presented to verify the theoretical analysis and discuss open questions and future investigations.

LINEAR & MULTILINEAR ALGEBRA (2023)

Article Mathematics, Applied

On the matrices in B-spline collocation methods for Riesz fractional equations and their spectral properties

Mariarosa Mazza, Marco Donatelli, Carla Manni, Hendrik Speleers

Summary: In this work, we study a fractional differential equation in Riesz form discretized by a polynomial B-spline collocation method. The resulting coefficient matrices possess a Toeplitz-like structure and their spectral properties are investigated. We prove that these matrices are ill-conditioned in both the low and high frequencies for large polynomial degrees. Moreover, we find similarities between our problem and classical diffusion problems.

NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS (2023)

Article Computer Science, Interdisciplinary Applications

A ghost-point smoothing strategy for geometric multigrid on curved boundaries

Armando Coco, Mariarosa Mazza, Matteo Semplice

Summary: We propose a Boundary Local Fourier Analysis (BLFA) method to optimize the relaxation parameters of boundary conditions in a multigrid framework. The method is designed for solving elliptic equations on curved domains and can be extended to general PDEs in curved domains. The boundary is implicitly defined by a level-set function and a ghost-point technique is used to handle the boundary conditions. The relaxation parameters are optimized based on the distance between ghost points and boundary to smooth the residual along the tangential direction.

JOURNAL OF COMPUTATIONAL PHYSICS (2023)

Article Mathematics, Applied

Estimating the trace of matrix functions with application to complex networks

Rafael Diaz Fuentes, Marco Donatelli, Caterina Fenu, Giorgio Mantica

Summary: This paper reviews several methods for approximating the trace of a symmetric matrix Omega and proposes a block stochastic method. The results of this technique converge quickly and it has the same computational advantages as the partial global Lanczos method.

NUMERICAL ALGORITHMS (2023)

Article Mathematics, Applied

Reduced order model for simulation of air pollution model and application in 2D urban street canyons via the meshfree gradient smoothing method

Mostafa Abbaszadeh, Mohammad Ivan Azis, Mehdi Dehghan, Reza Mohammadi-Arani

Summary: This paper proposes a new meshless numerical procedure, namely the gradient smoothing method (GSM), for simulating the pollutant transition equation in urban street canyons. The time derivative is approximated using the finite difference scheme, while the space derivative is discretized using the gradient smoothing method. Additionally, the proper orthogonal decomposition (POD) approach is employed to reduce CPU time. Several real-world examples are solved to verify the efficiency of the developed numerical procedure.

COMPUTERS & MATHEMATICS WITH APPLICATIONS (2023)

Article Biology

Predicting the effect of a combination drug therapy on the prostate tumor growth via an improvement of a direct radial basis function partition of unity technique for a diffuse-interface model

Niusha Narimani, Mehdi Dehghan

Summary: This paper numerically studies the therapies of prostate cancer in a two-dimensional space. The proposed model describes the tumor growth driven by a nutrient and the effects of cytotoxic chemotherapy and antiangiogenic therapy. The results obtained without using any adaptive algorithm show the response of the prostate tumor growth to different therapies.

COMPUTERS IN BIOLOGY AND MEDICINE (2023)

Article Engineering, Multidisciplinary

A reduced-order model based on cubic B-spline basis function and SSP Runge-Kutta procedure to investigate option pricing under jump-diffusion models

Mostafa Abbaszadeh, Yasmin Kalhor, Mehdi Dehghan, Marco Donatelli

Summary: The purpose of this research is to develop a numerical method for option pricing in jump-diffusion models. The proposed model consists of a backward partial integro-differential equation with diffusion and advection factors. Pseudo-spectral technique and cubic B-spline functions are used to solve the equation, and a second-order Strong Stability Preserved Runge-Kutta procedure is adopted. The efficiency and accuracy of the proposed method are demonstrated through various test cases.

ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS (2023)

Article Engineering, Multidisciplinary

Simulations of dendritic solidification via the diffuse approximate method

Mahboubeh Najafi, Mehdi Dehghan

Summary: In this work, two-dimensional dendritic solidification is simulated using the meshless Diffuse Approximate Method (DAM). The Stefan problem is studied through the phase-field model, considering both isotropic and anisotropic materials for comparisons. The effects of changing some constants on the obtained patterns are investigated.

ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS (2023)

Article Computer Science, Interdisciplinary Applications

A meshless collocation method based on Pascal polynomial approximation and implicit closest point method for solving reaction-diffusion systems on surfaces

Hasan Zamani-Gharaghoshi, Mehdi Dehghan, Mostafa Abbaszadeh

Summary: This paper presents a local meshless collocation method for solving reaction-diffusion systems on surfaces. The proposed numerical procedure utilizes Pascal polynomial approximation and closest point method. This method is geometrically flexible and can be used to solve partial differential equations on unstructured point clouds. It only requires a set of arbitrarily scattered mesh-free points representing the underlying surface.

ENGINEERING WITH COMPUTERS (2023)

Article Computer Science, Interdisciplinary Applications

Morphodynamic shallow layer equations featuring bed load and suspended sediment with lattice Boltzmann method

Reza MohammadiArani, Mehdi Dehghan, Mostafa Abbaszadeh

Summary: Different coupled systems for the shallow water equation, bed elevation, and suspended load equation have been proposed. The main goal of this paper is to utilize an advanced lattice Boltzmann method (LBM) to solve this system of equations. In addition, a practical approach is developed for applying open boundary conditions in order to relax the solution onto a prescribed equilibrium flow.

ENGINEERING WITH COMPUTERS (2023)

Article Mathematics, Applied

A fully mixed virtual element method for Darcy-Forchheimer miscible displacement of incompressible fluids appearing in porous media

Mehdi Dehghan, Zeinab Gharibi

Summary: This paper discusses the incompressible miscible displacement of two-dimensional Darcy-Forchheimer flow and formulates a mathematical model with two partial differential equations: a Darcy-Forchheimer flow equation for the pressure and a convection-diffusion equation for the concentration. The model is discretized using a fully mixed virtual element method (VEM) and stability, existence, and uniqueness of the associated mixed VEM solution are proved under smallness data assumption. Optimal error estimates are obtained for concentration, auxiliary flux variables, and velocity, and several numerical experiments are presented to support the theoretical analysis and illustrate the applicability for solving actual problems.

IMA JOURNAL OF NUMERICAL ANALYSIS (2023)

Article Mathematics, Applied

On the numerical solution of a population growth model of a species living in a closed system based on the moving least squares scheme

Fatemeh Asadi-Mehregan, Pouria Assari, Mehdi Dehghan

Summary: In this research, we present a numerical approach for solving a specific type of nonlinear integro-differential equations derived from Volterra's population model. This model captures the growth of a biological species in a closed system and includes an integral term to account for toxin accumulation. The proposed technique utilizes the discrete Galerkin scheme with the moving least squares (MLS) algorithm to estimate the solution of the integro-differential equations.

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS (2023)

Article Engineering, Multidisciplinary

Numerical solution of Allen-Cahn model on surfaces via an effective method based on generalized moving least squares (GMLS) approximation and the closest point approach

Hasan Zamani-Gharaghoshi, Mehdi Dehghan, Mostafa Abbaszadeh

Summary: This article presents a numerical method for solving the surface Allen-Cahn model. The method is based on the generalized moving least-squares approximation and the closest point method. It does not depend on the structure of the underlying surface and only requires a set of arbitrarily distributed mesh-free points on the surface.

ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS (2023)

Article Mathematics

A smoothing analysis for multigrid methods applied to tempered fractional problems

D. Ahmad, M. Donatelli, M. Mazza, S. Serra-Capizzano, K. Trotti

Summary: This article discusses the numerical solution of time-dependent space tempered fractional diffusion equations. The use of Crank-Nicolson in time and second-order accurate tempered weighted and shifted Grunwald difference in space leads to dense Toeplitz-like linear systems. By exploiting the related structure, a specialized multigrid solver and multigrid-based preconditioners are designed, all with weighted Jacobi as a smoother. A new smoothing analysis is provided, which expands the set of suitable Jacobi weights and confirms the computational effectiveness of the resulting multigrid-based solvers for tempered fractional diffusion equations.

LINEAR & MULTILINEAR ALGEBRA (2023)

Article Computer Science, Interdisciplinary Applications

A new type of non-polynomial based TENO scheme for hyperbolic conservation laws

Tian Liang, Lin Fu

Summary: In this work, a new shock-capturing framework is proposed based on a new candidate stencil arrangement and the combination of infinitely differentiable non-polynomial RBF-based reconstruction in smooth regions with jump-like non-polynomial interpolation for genuine discontinuities. The resulting scheme achieves high order accuracy and resolves genuine discontinuities with sub-cell resolution.

JOURNAL OF COMPUTATIONAL PHYSICS (2024)

Article Computer Science, Interdisciplinary Applications

A high-order residual-based viscosity finite element method for incompressible variable density flow

Lukas Lundgren, Murtazo Nazarov

Summary: In this paper, a high-order accurate finite element method for incompressible variable density flow is introduced. The method addresses the issues of saddle point system and stability problem through Schur complement preconditioning and artificial compressibility approaches, and it is validated to have high-order accuracy for smooth problems and accurately resolve discontinuities.

JOURNAL OF COMPUTATIONAL PHYSICS (2024)

Article Computer Science, Interdisciplinary Applications

Convergence analysis and optimization of a Robin Schwarz waveform relaxation method for time-periodic parabolic optimal control problems

Gabriele Ciaramella, Laurence Halpern, Luca Mechelli

Summary: This paper presents a novel convergence analysis of the optimized Schwarz waveform relaxation method for solving optimal control problems governed by periodic parabolic PDEs. The analysis is based on a Fourier-type technique applied to a semidiscrete-in-time form of the optimality condition, which enables a precise characterization of the convergence factor at the semidiscrete level. The behavior of the optimal transmission condition parameter is also analyzed in detail as the time discretization approaches zero.

JOURNAL OF COMPUTATIONAL PHYSICS (2024)

Article Computer Science, Interdisciplinary Applications

Data-driven Whitney forms for structure-preserving control volume analysis

Jonas A. Actor, Xiaozhe Hu, Andy Huang, Scott A. Roberts, Nathaniel Trask

Summary: This article introduces a scientific machine learning framework that uses a partition of unity architecture to model physics through control volume analysis. The framework can extract reduced models from full field data while preserving the physics. It is applicable to manifolds in arbitrary dimension and has been demonstrated effective in specific problems.

JOURNAL OF COMPUTATIONAL PHYSICS (2024)

Article Computer Science, Interdisciplinary Applications

Higher-continuity s-version of finite element method with B-spline functions

Nozomi Magome, Naoki Morita, Shigeki Kaneko, Naoto Mitsume

Summary: This paper proposes a novel strategy called B-spline based SFEM to fundamentally solve the problems of the conventional SFEM. It uses different basis functions and cubic B-spline basis functions with C-2-continuity to improve the accuracy of numerical integration and avoid matrix singularity. Numerical results show that the proposed method is superior to conventional methods in terms of accuracy and convergence.

JOURNAL OF COMPUTATIONAL PHYSICS (2024)

Article Computer Science, Interdisciplinary Applications

A cell-centred Eulerian volume-of-fluid method for compressible multi-material flows

Timothy R. Law, Philip T. Barton

Summary: This paper presents a practical cell-centred volume-of-fluid method for simulating compressible solid-fluid problems within a pure Eulerian setting. The method incorporates a mixed-cell update to maintain sharp interfaces, and can be easily extended to include other coupled physics. Various challenging test problems are used to validate the method, and its robustness and application in a multi-physics context are demonstrated.

JOURNAL OF COMPUTATIONAL PHYSICS (2024)

Article Computer Science, Interdisciplinary Applications

Two-step multi-resolution reconstruction-based compact gas-kinetic scheme on tetrahedral mesh

Xing Ji, Fengxiang Zhao, Wei Shyy, Kun Xu

Summary: This paper presents the development of a third-order compact gas-kinetic scheme for compressible Euler and Navier-Stokes solutions, constructed particularly for an unstructured tetrahedral mesh. The scheme demonstrates robustness in high-speed flow computation and exhibits excellent adaptability to meshes with complex geometrical configurations.

JOURNAL OF COMPUTATIONAL PHYSICS (2024)

Article Computer Science, Interdisciplinary Applications

Multiscale sampling for the inverse modeling of partial differential equations

Alsadig Ali, Abdullah Al-Mamun, Felipe Pereira, Arunasalam Rahunanthan

Summary: This paper presents a novel Bayesian statistical framework for the characterization of natural subsurface formations, and introduces the concept of multiscale sampling to localize the search in the stochastic space. The results show that the proposed framework performs well in solving inverse problems related to porous media flows.

JOURNAL OF COMPUTATIONAL PHYSICS (2024)

Article Computer Science, Interdisciplinary Applications

Constrained optimized dynamic mode decomposition with control for physically stable systems with exogeneous inputs

Jacob Rains, Yi Wang, Alec House, Andrew L. Kaminsky, Nathan A. Tison, Vamshi M. Korivi

Summary: This paper presents a novel method called constrained optimized DMD with Control (cOptDMDc), which extends the optimized DMD method to systems with exogenous inputs and can enforce the stability of the resulting reduced order model (ROM). The proposed method optimally places eigenvalues within the stable region, thus mitigating spurious eigenvalue issues. Comparative studies show that cOptDMDc achieves high accuracy and robustness.

JOURNAL OF COMPUTATIONAL PHYSICS (2024)

Article Computer Science, Interdisciplinary Applications

A hybridizable discontinuous Galerkin formulation for the Euler-Maxwell plasma model

Andrea La Spina, Jacob Fish

Summary: This work introduces a hybridizable discontinuous Galerkin formulation for simulating ideal plasmas. The proposed method couples the fluid and electromagnetic subproblems monolithically based on source and employs a fully implicit time integration scheme. The approach also utilizes a projection-based divergence correction method to enforce the Gauss laws in challenging scenarios. Numerical examples demonstrate the high-order accuracy, efficiency, and robustness of the proposed formulation.

JOURNAL OF COMPUTATIONAL PHYSICS (2024)

Article Computer Science, Interdisciplinary Applications

Numerical solution of the cavity scattering problem for flexural waves on thin plates: Linear finite element methods

Junhong Yue, Peijun Li

Summary: This paper proposes two numerical methods (IP-FEM and BP-FEM) to study the flexural wave scattering problem of an arbitrary-shaped cavity on an infinite thin plate. These methods successfully decompose the fourth-order plate wave equation into the Helmholtz and modified Helmholtz equations with coupled conditions on the cavity boundary, providing an effective solution to this challenging problem.

JOURNAL OF COMPUTATIONAL PHYSICS (2024)

Article Computer Science, Interdisciplinary Applications

Fast and scalable computation of shape-morphing nonlinear solutions with application to evolutional neural networks

William Anderson, Mohammad Farazmand

Summary: We develop fast and scalable methods, called RONS, for computing reduced-order nonlinear solutions. These methods have been proven to be highly effective in tackling challenging problems, but become computationally prohibitive as the number of parameters grows. To address this issue, three separate methods are proposed and their efficacy is demonstrated through examples. The application of RONS to neural networks is also discussed.

JOURNAL OF COMPUTATIONAL PHYSICS (2024)

Article Computer Science, Interdisciplinary Applications

A second order directional split exponential integrator for systems of advection-diffusion-reaction equations

Marco Caliari, Fabio Cassini

Summary: In this paper, a second order exponential scheme for stiff evolutionary advection-diffusion-reaction equations is proposed. The scheme is based on a directional splitting approach and uses computation of small sized exponential-like functions and tensor-matrix products for efficient implementation. Numerical examples demonstrate the advantage of the proposed approach over state-of-the-art techniques.

JOURNAL OF COMPUTATIONAL PHYSICS (2024)

Article Computer Science, Interdisciplinary Applications

A conservative semi-Lagrangian method for inhomogeneous Boltzmann equation

Sebastiano Boscarino, Seung Yeon Cho, Giovanni Russo

Summary: This work proposes a high order conservative semi-Lagrangian method for the inhomogeneous Boltzmann equation of rarefied gas dynamics. The method combines a semi-Lagrangian scheme for the convection term, a fast spectral method for computation of the collision operator, and a high order conservative reconstruction and a weighted optimization technique to preserve conservative quantities. Numerical tests demonstrate the accuracy and efficiency of the proposed method.

JOURNAL OF COMPUTATIONAL PHYSICS (2024)

Article Computer Science, Interdisciplinary Applications

Uniqueness and numerical scheme for spherical shell-structured sources from the far field patterns with at most two frequencies

Jialei Li, Xiaodong Liu, Qingxiang Shi

Summary: This study shows that the number, centers, scattering strengths, inner and outer diameters of spherical shell-structured sources can be uniquely determined from the far field patterns. A numerical scheme is proposed for reconstructing the spherical shell-structured sources, which includes a migration series method for locating the centers and an iterative method for computing the inner and outer diameters without computing derivatives.

JOURNAL OF COMPUTATIONAL PHYSICS (2024)