4.5 Article

The EF-1α promoter maintains high-level transgene expression from episomal vectors in transfected CHO-K1 cells

Journal

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE
Volume 21, Issue 11, Pages 3044-3054

Publisher

WILEY
DOI: 10.1111/jcmm.13216

Keywords

episomal vectors; transgene expression; regulatory element; transgene stability

Funding

  1. National Natural Science Foundation of China [31300702]
  2. Xinxiang Medical University [2016PN-KFKT-22]

Ask authors/readers for more resources

In our previous study, we demonstrated that episomal vectors based on the characteristic sequence of matrix attachment regions (MARs) and containing the cytomegalovirus (CMV) promoter allow transgenes to be maintained episomally in Chinese hamster ovary (CHO) cells. However, the transgene expression was unstable and the number of copies was low. In this study, we focused on enhancers, various promoters and promoter variants that could improve the transgene expression stability, expression magnitude (level) and the copy number of a MAR-based episomal vector in CHO-K1 cells. In comparison with the CMV promoter, the eukaryotic translation elongation factor 1 alpha (EF-1 alpha, gene symbol EEF1A1) promoter increased the transfection efficiency, the transgene expression, the proportion of expression-positive clones and the copy number of the episomal vector in long-term culture. By contrast, no significant positive effects were observed with an enhancer, CMV promoter variants or CAG promoter in the episomal vector in long-term culture. Moreover, the high-expression clones harbouring the EF-1 alpha promoter tended to be more stable in long-term culture, even in the absence of selection pressure. According to these findings, we concluded that the EF-1 alpha promoter is a potent regulatory sequence for episomal vectors because it maintains high transgene expression, transgene stability and copy number. These results provide valuable information on improvement of transgene stability and the copy number of episomal vectors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available