4.8 Article

Olefin conversion on nitrogen-doped carbon-supported cobalt catalyst: Effect of feedstock

Journal

JOURNAL OF CATALYSIS
Volume 354, Issue -, Pages 213-222

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcat.2017.08.019

Keywords

Oligomerization; Linear olefin; Cossee mechanism; Schulz-Flory distribution; Product selectivity; Isomerization

Ask authors/readers for more resources

A nitrogen-doped carbon-supported cobalt oxide catalyst is able to oligomerize ethylene, propylene, 1-butene and 1-hexene into mixtures of oligomers with above 94.1% dimers. Higher than 72.5% of the dimers produced from 1-butene and 1-hexene are internal linear olefins, while the dimer products from propylene oligomerization are 47.0% linear including 5.9% 1-hexene. Ethylene had the highest oligomerization activity with 56.1-87.0% 1-butene selectivity. The selectivity to linear alpha olefins decreases with an increasing oligomer chain length during ethylene oligomerization. The oligomers formed from ethylene conversion follow a Schulz-Flory distribution. Cossee type mechanism rationalizes the product selectivity from the four olefin feeds, suggesting that a 1,2-2,1 insertion sequence is critical to obtaining linear olefin products. The catalyst was inactive in oligomerizing internal olefins. (C) 2017 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available