4.7 Article

Redox-inactive metal ions promoted the catalytic reactivity of non-heme manganese complexes towards oxygen atom transfer

Journal

DALTON TRANSACTIONS
Volume 44, Issue 19, Pages 9182-9192

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4dt03993a

Keywords

-

Funding

  1. National Natural Science Foundation of China [21303063, 21273086]

Ask authors/readers for more resources

Redox-inactive metal ions can modulate the reactivity of redox-active metal ions in a variety of biological and chemical oxidations. Many synthetic models have been developed to help address the elusive roles of these redox-inactive metal ions. Using a non-heme manganese(II) complex as the model, the influence of redox-inactive metal ions as a Lewis acid on its catalytic efficiency in oxygen atom transfer was investigated. In the absence of redox-inactive metal ions, the manganese(II) catalyst is very sluggish, for example, in cyclooctene epoxidation, providing only 9.9% conversion with 4.1% yield of epoxide. However, addition of 2 equiv. of Al3+ to the manganese(II) catalyst sharply improves the epoxidation, providing up to 97.8% conversion with 91.4% yield of epoxide. EPR studies of the manganese(II) catalyst in the presence of an oxidant reveal a 16-line hyperfine structure centered at g = 2.0, clearly indicating the formation of a mixed valent di-mu-oxo-bridged diamond core, Mn-III-(mu-O)(2)-Mn-IV. The presence of a Lewis acid like Al3+ causes the dissociation of this diamond Mn-III-(mu-O)(2)-Mn-IV core to form monomeric manganese(IV) species which is responsible for improved epoxidation efficiency. This promotional effect has also been observed in other manganese complexes bearing various non-heme ligands. The findings presented here have provided a promising strategy to explore the catalytic reactivity of some di-mu-oxo-bridged complexes by adding non-redox metal ions to in situ dissociate those dimeric cores and may also provide clues to understand the mechanism of methane monooxygenase which has a similar diiron diamond core as the intermediate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Organic

Lewis Acid Promoted Aerobic Oxidative Coupling of Thiols with Phosphonates by Simple Nickel(II) Catalyst: Substrate Scope and Mechanistic Studies

Jing-Wen Xue, Miao Zeng, Sicheng Zhang, Zhuqi Chen, Guochuan Yin

JOURNAL OF ORGANIC CHEMISTRY (2019)

Article Chemistry, Physical

Degradation of Phenol Using Peroxymonosulfate Activated by a High Efficiency and Stable CoMgAl-LDH Catalyst

Zhuwei Liao, Jingyi Zhu, Ali Jawad, Jiajing Muzi, Zhuqi Chen, Zhulei Chen

MATERIALS (2019)

Article Chemistry, Physical

Catalytic carbonylation of renewable furfural derived 5-bromofurfural to 5-formyl-2-furancarboxylic acid in oil/aqueous bi-phase system

Guanfei Shen, Sicheng Zhang, Yu Lei, Jiaqi Shi, Yu Xia, Fuming Mei, Zhuqi Chen, Guochuan Yin

MOLECULAR CATALYSIS (2019)

Article Chemistry, Physical

Efficient and selective removal of chromium (VI) by sulfide assembled hydrotalcite compounds through concurrent reduction and adsorption processes

Gebremedhin G. Aregay, Jawad Ali, Yusheng Du, Ajmal Shahzad, Zhuqi Chen

JOURNAL OF MOLECULAR LIQUIDS (2019)

Article Environmental Sciences

Adsorptive purification of heavy metal contaminated wastewater with sewage sludge derived carbon-supported Mg(II) composite

Audrey Ngambia, Jerosha Ifthikar, Irshad Ibran Shahib, Ali Jawad, Ajmal Shahzad, Mengmeng Zhao, Jia Wang, Zhulei Chen, Zhuqi Chen

SCIENCE OF THE TOTAL ENVIRONMENT (2019)

Article Agricultural Engineering

Engineered biochar with anisotropic layered double hydroxide nanosheets to simultaneously and efficiently capture Pb2+ and CrO42- from electroplating wastewater

Huabin Wang, Siqi Wang, Zhulei Chen, Xinquan Zhou, Jia Wang, Zhuqi Chen

BIORESOURCE TECHNOLOGY (2020)

Article Engineering, Environmental

Understanding the synergetic effect from foreign metals in bimetallic oxides for PMS activation: A common strategy to increase the stoichiometric efficiency of oxidants

Xinquan Zhou, Chunguang Luo, Mengyi Luo, Qiliang Wang, Jia Wang, Zhuwei Liao, Zhulei Chen, Zhuqi Chen

CHEMICAL ENGINEERING JOURNAL (2020)

Article Engineering, Environmental

Tuning of Persulfate Activation from a Free Radical to a Nonradical Pathway through the Incorporation of Non-Redox Magnesium Oxide

Ali Jawad, Kun Zhan, Haibin Wang, Ajmal Shahzad, Zehua Zeng, Jia Wang, Xinquan Zhou, Habib Ullah, Zhulei Chen, Zhuqi Chen

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2020)

Article Engineering, Environmental

A self-gating proton-coupled electron transfer reduction of hexavalent chromium by core-shell SBA-Dithiocarbamate chitosan composite

Jerosha Ifthikar, Zhuqi Chen, Zhulei Chen, Ali Jawad

JOURNAL OF HAZARDOUS MATERIALS (2020)

Article Chemistry, Physical

Synergistic adsorption of Pb2+ and CrO42- on an engineered biochar highlighted by statistical physical modeling

Lotfi Sellaoui, Huabin Wang, Michael Badawi, Adrian Bonilla-Petriciolet, Zhuqi Chen

JOURNAL OF MOLECULAR LIQUIDS (2020)

Article Environmental Sciences

One-step preparation of ZVI-sludge derived biochar without external source of iron and its application on persulfate activation

Jia Wang, Min Shen, Qing Gong, Xianghui Wang, Jiayi Cai, Songlin Wang, Zhuqi Chen

SCIENCE OF THE TOTAL ENVIRONMENT (2020)

Article Engineering, Environmental

Regulating the redox centers of Fe through the enrichment of Mo moiety for persulfate activation: A new strategy to achieve maximum persulfate utilization efficiency

Jawad Ali, Lei Wenli, Ajmal Shahzad, Jerosha Ifthikar, Gebremedhin G. Aregay, Irshad Ibran Shahib, Zouhair Elkhlifi, Zhulei Chen, Zhuqi Chen

WATER RESEARCH (2020)

Article Engineering, Environmental

pH-dependent transformation products and residual toxicity evaluation of sulfamethoxazole degradation through non-radical oxygen species involved process

Jia Wang, Qing Gong, Jawad Ali, Min Shen, Jiayi Cai, Xinquan Zhou, Zhuwei Liao, Songlin Wang, Zhuqi Chen

CHEMICAL ENGINEERING JOURNAL (2020)

Article Engineering, Environmental

Non-radical PMS activation by the nanohybrid material with periodic confinement of reduced graphene oxide (rGO) and Cu hydroxides

Ajmal Shahzad, Jawad Ali, Jerosha Ifthikar, Gebremedhin G. Aregay, Jingyi Zhu, Zhulei Chen, Zhuqi Chen

JOURNAL OF HAZARDOUS MATERIALS (2020)

Article Agricultural Engineering

Black liquor as biomass feedstock to prepare zero-valent iron embedded biochar with red mud for Cr(VI) removal: Mechanisms insights and engineering practicality

Huabin Wang, Jiayi Cai, Zhuwei Liao, Ali Jawad, Jerosha Ifthikar, Zhulei Chen, Zhuqi Chen

BIORESOURCE TECHNOLOGY (2020)

Article Chemistry, Inorganic & Nuclear

The impact of Lewis acid variation on reactions with di-tert-butyl diazo diesters

Vaibhav Bedi, Dipendu Mandal, Zahid Hussain, Shi-Ming Chen, Yile Wu, Zheng-Wang Qu, Stefan Grimme, Douglas W. Stephan

Summary: The reaction of (tBuO(2)CN)(2) with 9-BBN leads to the formation of a bicyclic heterocyclic compound, while its reactions with BF3 or [Et3Si][B(C6F5)(4)] result in the isolation of different compounds. Computational studies reveal that the steric and electronic properties of the Lewis acid are important in the formation of one of the compounds.

DALTON TRANSACTIONS (2024)

Article Chemistry, Inorganic & Nuclear

Post-synthetic molecular modifications based on Schiff base condensation reactions for designing functional paddlewheel diruthenium(ii,ii) complexes

Chisa Itoh, Haruka Yoshino, Taku Kitayama, Wataru Kosaka, Hitoshi Miyasaka

Summary: A new synthetic route for constructing functional paddlewheel diruthenium(II,II) complexes was developed, utilizing Schiff base condensation reactions. The attached Schiff base groups significantly affected the electronic states of the resulting complexes, as revealed by cyclic voltammetry and DFT calculations.

DALTON TRANSACTIONS (2024)

Article Chemistry, Inorganic & Nuclear

The pressure-stabilized polymorph of indium triiodide

Danrui Ni, Haozhe Wang, Xianghan Xu, Weiwei Xie, Robert J. Cava

Summary: A layered rhombohedral polymorph of indium(iii) triiodide is synthesized at high pressure and temperature. It has an orange color, which is different from ambient pressure InI3, which has a monoclinic molecular structure and a light-yellow color.

DALTON TRANSACTIONS (2024)

Review Chemistry, Inorganic & Nuclear

Unlocking the catalytic potential of gold(II) complexes: a comprehensive reassessment

Juan Carlos Perez-Sanchez, Raquel P. Herrera, M. Concepcion Gimeno

Summary: Gold(II) complexes have been less utilized in catalysis compared to their gold(I) and gold(III) counterparts. However, gold(II) complexes offer potential in homo-coupling and cross-coupling reactions, as they are more easily accessible through simplified oxidation and reduction processes. Gold(II) exhibits characteristics of both soft acid gold(I) and hard acid gold(III). This review explores the unique reactivity and potential applications of gold(II) species, highlighting their significance in catalytic transformations.

DALTON TRANSACTIONS (2024)

Article Chemistry, Inorganic & Nuclear

Enhancing isoprene polymerization with high activity and adjustable monomer enchainment using cyclooctyl-fused iminopyridine iron precatalysts

Nighat Yousuf, Yanping Ma, Qaiser Mahmood, Wenjuan Zhang, Yizhou Wang, Hassan Saeed, Wen-Hua Sun

Summary: In this study, a series of structurally rigid cyclooctyl-fused iminopyridine iron complexes were synthesized and used with methylaluminoxane for isoprene polymerization. The extent of steric hindrance of the ligand framework was found to significantly affect catalytic performance, with less hindrance leading to better activity and stability.

DALTON TRANSACTIONS (2024)

Article Chemistry, Inorganic & Nuclear

Improving the performance of perovskite solar cells using a dual-hole transport layer

Chenghao Song, Huiwei Du, Menglei Xu, Jie Yang, Xinyu Zhang, Jungan Wang, Yuanfang Zhang, Chengjun Gu, Rui Li, Tao Hong, Jingji Zhang, Jiangying Wang, Yongchun Ye

Summary: This study improves the performance of perovskite solar cells by using a dual-hole transport layer strategy. This strategy enhances the charge transfer efficiency of the transport layer, reduces charge recombination, and improves the quality of the perovskite film layer. Ultimately, the stability of the device is enhanced.

DALTON TRANSACTIONS (2024)

Article Chemistry, Inorganic & Nuclear

Aryl selenonium vs. aryl sulfonium counterions in polyoxometalate chemistry: the impact of Se+ cationic centers on the photocatalytic reduction of dichromate

Mahender Singh, Aakash Yadav, Ranjit Singh, Chullikkattil P. Pradeep

Summary: A new aryl selenonium polyoxometalate hybrid was developed and compared with an aryl sulfonium polyoxometalate hybrid in terms of their photocatalytic properties. It was found that the aryl selenonium hybrid exhibited better catalytic performance, which could be attributed to the larger atomic radii of selenium stabilizing the photogenerated electron-hole pair more efficiently. Additionally, the generation of elemental selenium through cleavage of C-Se bonds during catalysis was observed.

DALTON TRANSACTIONS (2024)

Article Chemistry, Inorganic & Nuclear

Construction of core-shell CoSe2/ZnIn2S4 heterostructures for efficient visible-light-driven photocatalytic hydrogen evolution

Yuhan Xie, Boyu Dong, Xuemin Wang, Siyuan Wang, Jinxi Chen, Yongbing Lou

Summary: This study successfully fabricated visible-light-responsive three-dimensional core-shell CoSe2/ZnIn2S4 heterostructures and achieved attractive activity in photocatalytic hydrogen evolution. The presence of CoSe2 improved light absorption and accelerated charge transfer kinetics. The strong interaction between CoSe2 and ZnIn2S4 reduced charge recombination, further enhancing photocatalytic activity for hydrogen evolution.

DALTON TRANSACTIONS (2024)

Article Chemistry, Inorganic & Nuclear

Promising TMDC-like optical and excitonic properties of the TiBr2 2H monolayer

Andre L. de O. Batista, Joao Marcos T. Palheta, Mauricio J. Piotrowski, Celso R. C. Rego, Diego Guedes-Sobrinho, Alexandre C. Dias

Summary: This study presents a simulation protocol that provides a solid foundation for exploring two-dimensional materials. Using the TiBr2 2H monolayer as an example, the study reveals its promising properties for optoelectronic and valleytronic applications, including its stability, spin-orbit coupling effects, and optical helicity selection rule.

DALTON TRANSACTIONS (2024)

Article Chemistry, Inorganic & Nuclear

The {Cu2I2} cluster bearing metal organic frameworks: crystal structures and fluorescence detecting performances towards cysteine and explosive molecules

Jiang Jiang, Zi-Wei Li, Zhi-Zhuan Zhang, Bin Tan, Zhao-Feng Wu, Xiao-Ying Huang

Summary: In this work, two metal organic frameworks (MOFs) containing {Cu2I2} clusters, Eu-CuI-INA and Sr-K-CuI-INA, were synthesized and characterized. Both materials have a three-dimensional structure with {Cu2I2} clusters coordinated by INA(-) ligands and Eu3+ or Sr2+ ions. The Sr-K-CuI-INA material exhibited sensitive fluorescence sensing behaviors towards cysteine and nitro-bearing molecules, showing potential applications in bio and explosive molecule sensing. This work provides a good reference for designing fluorescent MOF probes containing CuI molecules.

DALTON TRANSACTIONS (2024)

Article Chemistry, Inorganic & Nuclear

Coral-like CoSe2@N-doped carbon with a high initial coulombic efficiency as advanced anode materials for Na-ion batteries

Zhiya Lin, Jiasheng Wu, Qianwen Ye, Yulong Chen, Hai Jia, Xiaohui Huang, Shaoming Ying

Summary: Na-ion batteries (NIBs) have attracted great interest as a potential technology for grid-scale energy storage due to the wide distribution, low cost, and environmental friendliness of sodium resources. However, their implementation is hindered by low rate capability and cycling stability caused by the large ionic size of Na+. In this study, a three-dimensional nanoarchitectured coral-like CoSe2@N-doped carbon (CL-CoSe2@NC) was synthesized, and it exhibited improved sodium storage properties with better electrode kinetics and a stable SEI film.

DALTON TRANSACTIONS (2024)

Article Chemistry, Inorganic & Nuclear

Mechanism of photocatalytic CO2 reduction to HCO2H by a robust multifunctional iridium complex

Ya-Qiong Zhang, Yu Zhang, Guoping Zeng, Rong-Zhen Liao, Man Li

Summary: The mechanism and selectivity of CO2 reduction under visible light were investigated using density functional calculations. The results showed that a tetradentate PNNP-type Iridium(III) complex exhibited high activity and selectivity in the reaction.

DALTON TRANSACTIONS (2024)

Article Chemistry, Inorganic & Nuclear

Enhanced thermoelectric properties of In-filled Co4Sb12 by dispersion of reduced graphene oxide

Sanyukta Ghosh, Shubhanth Jain, Soumya Ranjan Mishra, Gerda Rogl, Peter Rogl, Ernst Bauer, B. S. Murty, A. Govindaraj, Ramesh Chandra Mallik

Summary: In this study, reduced graphene oxide (rGO) was uniformly dispersed in the In0.5Co4Sb12 bulk material by ultrasonication, which effectively reduced the lattice thermal conductivity and improved the thermoelectric efficiency.

DALTON TRANSACTIONS (2024)

Article Chemistry, Inorganic & Nuclear

An effective visible-light driven fumarate production from gaseous CO2 and pyruvate by the cationic zinc porphyrin-based photocatalytic system with dual biocatalysts

Mika Takeuchi, Yutaka Amao

Summary: This study developed an effective visible-light driven system for fumaric acid production using renewable resources such as biomass derivatives, providing an alternative to the current petroleum-based synthesis methods.

DALTON TRANSACTIONS (2024)

Article Chemistry, Inorganic & Nuclear

Tin-doped NiFe2O4 nanoblocks grown on an iron foil for efficient and stable water splitting at large current densities

Juan Jian, Meiting Wang, Zhuo Wang, Jingwen Meng, Yuqin Yang, Limin Chang

Summary: Developing low-cost and self-supported bifunctional catalysts is crucial for highly efficient water splitting devices. In this study, nano-NiFe2O4 was directly grown onto iron foil surface and Sn4+ was introduced into the NiFe2O4. The resulting Sn-NiFe2O4/IF showed low overpotentials and high current densities during oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), making it a promising catalyst for large-scale hydrogen production.

DALTON TRANSACTIONS (2024)