4.6 Article

Interfacial Fracture of Nanowire Electrodes of Lithium-Ion Batteries

Journal

JOM
Volume 69, Issue 9, Pages 1519-1523

Publisher

SPRINGER
DOI: 10.1007/s11837-017-2411-x

Keywords

-

Funding

  1. Texas A&M Engineering Experiment Station

Ask authors/readers for more resources

Nanowires (NW) have emerged as a promising design for high power-density lithium-ion battery (LIB) electrodes. However, volume changes during cycling can lead to fracture of the NWs. In this paper, we investigate a particularly detrimental form of fracture: interfacial detachment of the NW from the current collector (CC). We perform finite element simulations to calculate the energy release rates of NWs during lithiation as a function of geometric parameters and mechanical properties. The simulations show that the energy release rate of a surface crack decreases as it propagates along the NW/CC interface toward the center of the NW. Moreover, this paper demonstrates that plastic deformation in the NWs drastically reduces stresses and thus crack-driving forces, thereby mitigating interfacial fracture. Overall, the results in this paper provide design guidelines for averting NW/CC interfacial fractures during operation of LIBs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available