4.4 Review

Biomimetic Synthetic Self-Assembled Hydrogels for Cell Transplantation

Journal

CURRENT TOPICS IN MEDICINAL CHEMISTRY
Volume 15, Issue 13, Pages 1209-1226

Publisher

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1568026615666150330111057

Keywords

Biodegradation; Cell transplantation; Hydrogels; Regenerative Medicine; Self-assembly; Synthetically-derived biopolymers

Funding

  1. FEDER funds through the Programa Operacional Factores de Competitividade - COMPETE
  2. Portuguese funds through FCT - Fundacao para a Ciencia e a Tecnologia [HMSP-ICT/0020/2010, PTDC/SAU-BMA/118869/2010, PEst/SAU/LA0002/2013]
  3. FCT [PD/BD/105953/2014]
  4. QREN through program ON. 2 [NORTE-07-0124-FEDER-000005]
  5. Fundação para a Ciência e a Tecnologia [HMSP-ICT/0020/2010, PD/BD/105953/2014, PTDC/SAU-BMA/118869/2010] Funding Source: FCT

Ask authors/readers for more resources

The development of three-dimensional matrices capable of recapitulating the main features of native extracellular matrix and contribute for the establishment of a favorable microenvironment for cell behavior and fate is expected to circumvent some of the main limitations of cell-based therapies. In this context, self-assembly has emerged as a promising strategy to engineer cell-compatible hydrogels. A wide number of synthetically-derived biopolymers, such as proteins, peptides and DNA/RNA, with intrinsic ability to self-assemble into well-defined nanofibrous structures, are being explored. The resulting hydrogels, in addition to closely resembling the architecture of native cellular microenvironments, present a versatile and dynamic behavior that allows them to be designed to undergo sol-to-gel transition in response to exogenous stimulus. This review presents an overview on the state-of-the-art of the different strategies being explored for the development of injectable synthetic self-assembled hydrogels for cell transplantation and/or recruitment of endogenous cells, with an emphasis on their biological performance, both in vitro and in vivo. Systems based on peptides are the most widely explored and have already generated promising results in pre-clinical in vivo studies involving different repair/regenerative scenarios, including cartilage, bone, nerve and heart. On the other hand, systems based on DNA and hybrid hydrogels are now emerging for application in the biomedical field with high potential. Finally, the main challenges hampering the translation of these systems to the clinic and the issues that need to be addressed for these to progress from bench-to-bedside are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available