4.7 Article

Estimating urban vegetation fraction across 25 cities in pan-Pacific using Landsat time series data

Journal

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.isprsjprs.2016.12.014

Keywords

Time series; Spectral unmixing; Urban vegetation; Landsat

Funding

  1. NSERC [RGPIN 311926-13]

Ask authors/readers for more resources

Urbanization globally is consistently reshaping the natural landscape to accommodate the growing human population. Urban vegetation plays a key role in moderating environmental impacts caused by urbanization and is critically important for local economic, social and cultural development. The differing patterns of human population growth, varying urban structures and development stages, results in highly varied spatial and temporal vegetation patterns particularly in the pan-Pacific region which has some of the fastest urbanization rates globally. Yet spatially-explicit temporal information on the amount and change of urban vegetation is rarely documented particularly in less developed nations. Remote sensing offers an exceptional data source and a unique perspective to map urban vegetation and change due to its consistency and ubiquitous nature. In this research, we assess the vegetation fractions of 25 cities across 12 pan-Pacific countries using annual gap-free Landsat surface reflectance products acquired from 1984 to 2012, using sub-pixel, spectral unmixing approaches. Vegetation change trends were then analyzed using Mann-Kendall statistics and Theil-Sen slope estimators. Unmixing results successfully mapped urban vegetation for pixels located in urban parks, forested mountainous regions, as well as agricultural land (correlation coefficient ranging from 0.66 to 0.77). The greatest vegetation loss from 1984 to 2012 was found in Shanghai, Tianjin, and Dalian in China. In contrast, cities including Vancouver (Canada) and Seattle (USA) showed stable vegetation trends through time. Using temporal trend analysis, our results suggest that it is possible to reduce noise and outliers caused by phenological changes particularly in cropland using dense new Landsat time series approaches. We conclude that simple yet effective approaches of unmixing Landsat time series data for assessing spatial and temporal changes of urban vegetation at regional scales can provide critical information for urban planners and anthropogenic studies globally. (C) 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Computer Science, Information Systems

Cognitive Dissonance in Technology Adoption: A Study of Smart Home Users

Davit Marikyan, Savvas Papagiannidis, Eleftherios Alamanos

Summary: This study addresses the outcomes of technology use when it falls short of expectations and the coping mechanisms users may use in such circumstances. By adopting Cognitive Dissonance Theory, the study explores how negative disconfirmation of expectations can result in positive outcomes and how negative emotions impact the selection of dissonance reduction mechanisms. The study finds that post-disconfirmation dissonance leads to feelings of anger, guilt, and regret, which correlate with dissonance reduction mechanisms, ultimately affecting satisfaction and well-being.

INFORMATION SYSTEMS FRONTIERS (2023)

Article Environmental Sciences

Land cover classification in an era of big and open data: Optimizing localized implementation and training data selection to improve mapping outcomes

Txomin Hermosilla, Michael A. Wulder, Joanne C. White, Nicholas C. Coops

Summary: Deriving land cover from remotely sensed data is essential for operational mapping and reporting programs, benefiting from free imagery access and improved technological capabilities. The accuracy of land cover maps depends on calibration data, classification models, and implementation methods.

REMOTE SENSING OF ENVIRONMENT (2022)

Article Biodiversity Conservation

Using leaf functional traits to remotely detect Cytisus scoparius (Linnaeus) Link in endangered savannahs

Paul W. Hacker, Nicholas C. Coops

Summary: Accurate and timely identification of invasive plant species is crucial for successful management practices. This study found that remotely sensed leaf functional traits can differentiate C. scoparius from other common plant species, providing new possibilities for addressing the issue of Scotch broom invasion.

NEOBIOTA (2022)

Article Ecology

Assessing representation of remote sensing derived forest structure and land cover across a network of protected areas

Evan R. Muise, Nicholas C. Coops, Txomin Hermosilla, Stephen S. Ban

Summary: Protected areas are important for conserving biodiversity and ecosystem services, but current metrics for assessing their effectiveness and representation are inadequate. This study analyzed the protected area network in British Columbia, Canada using remote sensing data and freely available information, and found biases towards high-elevation and alpine areas. Analysis of forest structural attributes suggests establishing additional protected areas to ensure representation of different forest structure regimes across the province.

ECOLOGICAL APPLICATIONS (2022)

Article Remote Sensing

Mapping Dominant Boreal Tree Species Groups by Combining Area-Based and Individual Tree Crown LiDAR Metrics with Sentinel-2 Data

Martin Queinnec, Nicholas C. Coops, Joanne C. White, Verena C. Griess, Naomi B. Schwartz, Grant McCartney

Summary: In this study, dominant species groups in a large boreal forest were mapped by combining area-based and individual tree metrics derived from LiDAR data with multispectral information from Sentinel-2 imagery. The study found that variables such as reflectance in the red edge region, tree crown area and volume, and cumulative distribution of LiDAR returns in the canopy were important for discriminating between species groups.

CANADIAN JOURNAL OF REMOTE SENSING (2023)

Article Remote Sensing

Automated Forest Harvest Detection With a Normalized PlanetScope Imagery Time Series

Levi Keay, Christopher Mulverhill, Nicholas C. C. Coops, Grant McCartney

Summary: The advent of CubeSat constellations has revolutionized the ability to observe Earth systems through time. This study developed and implemented a method for the spatial and temporal detection of forest harvest operations using images from the PlanetScope constellation. Results indicate that forest harvesting can be detected with relative accuracy, providing previously unavailable levels of spatial and temporal detail for forest stakeholders.

CANADIAN JOURNAL OF REMOTE SENSING (2023)

Article Remote Sensing

Attributing a Causal Agent and Assessing the Severity of Non-Stand Replacing Disturbances in a Northern Hardwood Forest using Landsat-Derived Vegetation Indices

Alexandre Morin-Bernard, Alexis Achim, Nicholas C. Coops

Summary: Non-stand-replacing disturbances play a significant role in northern hardwood forest dynamics, but are more difficult to characterize using satellite imagery than stand-replacing events. This study proposes a hurdle approach that attributes disturbance causal agents to specific sample plots, achieving an overall accuracy of 82.9%. Disturbance-specific models were then developed to assess the severity of partial harvests and damage from ice storms, with r-squared values of 0.57 and 0.59, respectively. These models provide important information for future silvicultural planning by capturing within-stand variability in disturbance severity.

CANADIAN JOURNAL OF REMOTE SENSING (2023)

Review Fisheries

Advances in remote sensing of freshwater fish habitat: A systematic review to identify current approaches, strengths and challenges

Spencer Dakin Kuiper, Nicholas C. C. Coops, Scott G. G. Hinch, Joanne C. C. White

Summary: Remote sensing technology has the potential to revolutionize freshwater fish habitat monitoring by providing information across large geographic areas, but the overwhelming number of platforms, sensors, and software available may hinder its widespread use. This review examines the fundamental characteristics of remote sensing technologies used for freshwater habitat characterization, reviews studies that have utilized these technologies, and identifies key habitat features, fish species, and regions that have been examined. The review also highlights the strengths and weaknesses of different remote sensing technologies, suggests future research directions, and provides important considerations for those interested in utilizing these technologies for freshwater fish habitat characterization.

FISH AND FISHERIES (2023)

Article Forestry

Pre-fire measures of boreal forest structure and composition inform interpretation of post-fire spectral recovery rates

Joanne C. White, Txomin Hermosilla, Michael A. Wulder

Summary: Wildfire is a significant factor in driving forest dynamics in boreal forests, with increasing wildfire activity observed in the past 50 years. Post-fire recovery plays a vital role in carbon balance and the provision of ecosystem goods and services in boreal forests. Monitoring recovery is challenging due to the large and inaccessible impacted areas, as well as the variability in post-fire conditions. Remote sensing data can provide assessments of pre- and post-fire conditions and spectral recovery baselines, but the connection between spectral measures and on-ground forest recovery needs to be established.

FOREST ECOLOGY AND MANAGEMENT (2023)

Article Forestry

Assessing future climate trends and implications for managed forests across Canadian ecozones

A. R. Wotherspoon, A. Achim, N. C. Coops

Summary: This study examines the future climate trends in eight ecozones in Canada that contain managed forests. The projections suggest a warming trend and an overall increase in precipitation. The study highlights the potential impacts on dominant species and wood volume for Canada's forestry industry.

CANADIAN JOURNAL OF FOREST RESEARCH (2023)

Article Forestry

Modelling height growth of temperate mixedwood forests using an age-independent approach and multi-temporal airborne laser scanning data

Jose Riofrio, Joanne C. White, Piotr Tompalski, Nicholas C. Coops, Michael A. Wulder

Summary: By developing age-independent height growth models, using multi-temporal airborne laser scanning (ALS) data, a comprehensive indicator of site quality for complex and irregular stand structures is provided. This approach leverages the accurate, spatially detailed characterization of canopy heights afforded by ALS data and is independent of stand age, increasing the possible geographic extent of height growth estimates.

FOREST ECOLOGY AND MANAGEMENT (2023)

Article Geography, Physical

An assessment approach for pixel-based image composites

Saverio Francini, Txomin Hermosilla, Nicholas C. Coops, Michael A. Wulder, Joanne C. White, Gherardo Chirici

Summary: Remote sensing is a major source of information for monitoring forest dynamics, but accurate surface reflectance data is often difficult to obtain. Pixel-based composites are used to generate complete coverage of the area of interest from multi-temporal images, but a comprehensive methodology for assessing the quality of these composites is currently lacking. In this study, a pixel-based composite assessment methodology based on five criteria was introduced and tested on Landsat images over Europe. The results showed that the assessment approach was effective for evaluating the quality of pixel-based composites and could be applied in various applications.

ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING (2023)

Article Ecology

Facets of functional diversity support niche-based explanations for Australian biodiversity gradients

Margaret E. Andrew, Douglas K. Bolton, Gregory J. M. Rickbeil, Nicholas C. Coops

Summary: This study evaluates the effects of niche-based mechanisms, including environmental filtering, niche availability, and niche packing, on biodiversity patterns. The results show that the importance of these mechanisms varies with scale, position on environmental gradients, and taxonomic group.

JOURNAL OF BIOGEOGRAPHY (2023)

No Data Available