4.7 Article

Experimental investigation on heat transfer characteristics during melting of a phase change material with dispersed TiO2 nanoparticles in a rectangular enclosure

Journal

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Volume 109, Issue -, Pages 134-146

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2017.01.109

Keywords

PCM; Nanoparticles; Melting process; Non-Newtonian; Natural convection

Ask authors/readers for more resources

This paper presents an experimental investigation on the melting process of n-octadecane as a phase change material (PCM) with dispersed titanium oxide (TiO2) nanoparticles. Experiments were performed in a rectangular enclosure heated at constant rates from one vertical side corresponding to Rayleigh numbers in the range 0.57 x 10(8)-43.2 x 10(8) and Stefan number in the range 5.7-23.8. The rheological behavior of liquid PCM/TiO2 at the mass fractions of 2 and 4% tended to Bingham fluids, thus the melting experiment was conducted for Bingham numbers in the range 0-31.1. Heat transfer during melting was characterized by visualizing the solid-liquid interface as well as recording the temperature distribution in the enclosure. Experimental results showed that at the initial stage of melting, heat transferred by conduction, and at later times, natural convection dominated heat transfer. Dispersing TiO2 nanoparticles led to increase in Bingham number and consequently the natural convection and melting rate deteriorated. Two correlations were proposed to predict the Nusselt number and melted volume fraction as a function of Fourier number, Rayleigh number, Stefan number, Bingham number and mass fraction of nanoparticles. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available