4.7 Article

Graphene Fabry-Perot Cavity Leaky-Wave Antennas: Plasmonic Versus Nonplasmonic Solutions

Journal

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION
Volume 65, Issue 4, Pages 1651-1660

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TAP.2017.2670520

Keywords

Fabry-Perot cavities (FPCs); graphene; leaky-wave antennas (LWAs); plasmonics; terahertz; tunable antennas

Ask authors/readers for more resources

Tunable THz antennas based on a single unpatterned graphene sheet placed inside a grounded dielectric multilayer are studied with the aim of characterizing their performance in terms of pattern reconfigurability, directivity, and radiation efficiency. The considered structures belong to the class of Fabry-Perot cavity (FPC) antennas, whose radiation mechanism relies on the excitation of cylindrical leaky waves with an ordinary (i.e., nonplasmonic) sinusoidal transverse modal profile. This allows for achieving radiation efficiencies considerably higher than those of alternative graphene-based radiators based on the excitation of surface-plasmon polaritons (SPPs) either in bound or leaky propagation regimes. A customized efficient circuit model has been employed in order to obtain all the radiation characteristics of such graphene FPC antennas, which have also been fully validated by means of a CAD tool. The role of the graphene quality is explicitly taken into account in this comprehensive investigation, proving that it plays a remarkable role in establishing the antenna performance. In particular, it is expected that the standard quality of graphene allows for designing low-efficiency reconfigurable THz antennas based on SPPs and, conversely, high-efficiency FPC antennas with slightly reduced reconfigurability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available