4.6 Article

Ecosystem change and decadal variation in stock-recruitment relationships of Lake Erie yellow perch (Perca flavescens)

Journal

ICES JOURNAL OF MARINE SCIENCE
Volume 75, Issue 2, Pages 531-540

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/icesjms/fsx188

Keywords

eutrophication; invasive species; population dynamics; regime shifts

Funding

  1. Natural Sciences and Engineering Research Council of Canada Strategic Networks grant
  2. Ontario Commercial Fisheries' Association

Ask authors/readers for more resources

Fish stock-recruitment relationships (SRRs) may vary in response to ecosystem change, increasing uncertainty for fisheries management. We defined three periods between 1975 and 2015 over which Lake Erie, a Laurentian Great Lake, underwent significant ecosystem changes: before zebra mussel (Dreissena polymorpha) establishment, after zebra mussel establishment and before re-eutrophication, and after re-eutrophication. To examine the extent to which SRRs of Lake Erie yellow perch (Perca flavescens) also varied over these periods, we compared the performance of Baseline (constant recruitment), Ricker (constant SRR), Periodic Ricker (different SRRs among three periods) and Random-walk Ricker (annually varying SRRs) models fitted to data for yellow perch stocks corresponding to three lake basins. Periodic and Random-walk Ricker models performed better for stocks in the western and eastern basins, but the Baseline model performed best in the central basin. Annual variation in the SRRs coincided with the timing of zebra mussel establishment and re-eutrophication in the shallower western basin, but not in the deeper eastern basin, where quagga mussels (Dreissena bugensis) established later and conditions are less eutrophic. These results underscore that temporally and spatially varying SRRs associated with ecosystem change should be taken into account in models of fish population dynamics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available