4.7 Article

Evolution of electron phase space holes in inhomogeneous magnetic fields

Journal

GEOPHYSICAL RESEARCH LETTERS
Volume 44, Issue 5, Pages 2105-2112

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2017GL072536

Keywords

solitary waves; electron holes; Vlasov simulation; slow electron holes

Funding

  1. Russian Foundation for Basic Research [16-32-00721]
  2. JHU/APL [922613]

Ask authors/readers for more resources

Electron phase space holes (EHs) are electrostatic solitary waves that are widely observed in the space plasma often permeated by inhomogeneous magnetic fields. Understanding of the EH evolution in inhomogeneous magnetic fields is critical for accurate interpretations of spacecraft data. To study this evolution, we use 1.5-D gyrokinetic electrostatic Vlasov code (magnetized electrons and immobile ions) with periodic boundary conditions. We find that EHs propagating into stronger (weaker) magnetic field are decelerated (accelerated) with deceleration (acceleration) rate dependent on the magnetic field gradient. Remarkably, decelerating EHs are reflected at the magnetic field dependent only on EH parameters (independent of the magnetic field gradient). A magnetic field inhomogeneity results in development of a net potential drop along EHs. Our simulations suggest that slow EHs recently observed in the plasma sheet boundary layer can appear due to braking of initially fast EHs by magnetic field gradients and that a large number of even fast EHs can contribute to macroscopic parallel potential drops.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available