4.4 Article

Selection To Increase Expression, Not Sequence Diversity, Precedes Gene Family Origin and Expansion in Rattlesnake Venom

Journal

GENETICS
Volume 206, Issue 3, Pages 1569-1580

Publisher

GENETICS SOCIETY AMERICA
DOI: 10.1534/genetics.117.202655

Keywords

copy number; gene expression; gene family; selection

Funding

  1. National Science Foundation [DEB 1145987]
  2. Direct For Biological Sciences
  3. Division Of Environmental Biology [1145978] Funding Source: National Science Foundation

Ask authors/readers for more resources

Gene duplication is the primary mechanism leading to new genes and phenotypic novelty, but the proximate evolutionary processes underlying gene family origin, maintenance, and expansion are poorly understood. Although sub- and neofunctionalization provide clear long-term advantages, selection does not act with foresight, and unless a redundant gene copy provides an immediate fitness advantage, the copy will most likely be lost. Many models for the evolution of genes immediately following duplication have been proposed, but the robustness and applicability of these models is unclear because of the lack of data at the population level. We used qPCR, protein expression data, genome sequencing, and hybrid enrichment to test three competing models that differ in whether selection favoring the spread of duplicates acts primarily on expression level or sequence diversity for specific toxin-encoding loci in the eastern diamondback rattlesnake (Crotalus adamanteus). We sampled 178 individuals and identified significant inter- and intrapopulation variation in copy number, demonstrated that copy number was significantly and positively correlated with protein expression, and found little to no sequence variation across paralogs in all populations. Collectively, these results demonstrate that selection for increased expression, not sequence diversity, was the proximate evolutionary process underlying gene family origin and expansion, providing data needed to resolve the debate over which evolutionary processes govern the fates of gene copies immediately following duplication.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available