4.7 Article

An investigation on repeated methane hydrates formation in porous hydrogel particles

Journal

FUEL
Volume 194, Issue -, Pages 395-405

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2017.01.037

Keywords

Methane hydrates formation; Hydrogel particles; Dry-water droplets; Reversible methane storage; Shrinking-core model; Equilibrium water content

Funding

  1. Australia-China Natural Gas Technology Partnership Fund

Ask authors/readers for more resources

Porous hydrogel particles of poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(N-isopropylacrylamide) (PNIPAAm) with varying water absorbability and quantities were investigated upon their ability and stability to support the reversible methane hydrates storage in the presence of silica nanoparticles and water. Results from experimental and computational simulation indicated that the equilibrium water content and types of hydrogels, and the quantity of the hydrogel particles used in the mixture affect the hydrate formation kinetics. At the experimental condition of 4.5 MPa, all types of porous hydrogel particles were proved to be effective to store methane in the hydrates form. A storage capacity of 206 cm(3) methane gas (as at standard temperature and pressure) per gram water was achieved when the hydrate forming mixture contained four parts of PHEMA20, one part of silica nanoparticles and fifteen parts of water. Quantitative analysis using the shrinking-core model indicated that the presence of the hydrogel particles could increase the overall methane diffusivity and improve the hydrate formation kinetics, therefore the overall water conversion rate also enhanced. A strong reversibility was demonstrated by the added porous hydrogel particles. Changing water uptake by the hydrogel particles during the cool-thawing procedure was evident by the simulated water distribution data. The hydrogels with higher equilibrium water content, greater pore volumes and more stable porous structures and the lower operational pressure have shown better methane storage capacity and reversibility. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available