4.7 Article

Populus tremuloides seedling establishment: An underexplored vector for forest type conversion after multiple disturbances

Journal

FOREST ECOLOGY AND MANAGEMENT
Volume 404, Issue -, Pages 156-164

Publisher

ELSEVIER
DOI: 10.1016/j.foreco.2017.08.008

Keywords

Adaptive resilience; Aspen sexual reproduction; Compounded disturbance; Post-fire regeneration; Seral versus stable aspen communities; Species distribution model

Categories

Funding

  1. National Science Foundation [1262691]
  2. NSF Graduate Research Fellowship [2015187717]
  3. Division Of Behavioral and Cognitive Sci
  4. Direct For Social, Behav & Economic Scie [1262691] Funding Source: National Science Foundation

Ask authors/readers for more resources

Ecosystem resilience to climate change is contingent on post-disturbance plant regeneration. Sparse gymnosperm regeneration has been documented in subalpine forests following recent wildfires and compounded disturbances, both of which are increasing. In the US Intermountain West, this may cause a shift to non-forest in some areas, but other forests may demonstrate adaptive resilience through increased quaking aspen (Populus tremuloides Michx) dominance. However, this potential depends on ill-defined constraints of aspen sexual regeneration under current climate. We created an ensemble of species distribution models for aspen seedling distribution following severe wildfire to define constraints on establishment. We recorded P. tremuloides seedling locations across a post-fire, post-blowdown landscape. We used 3 algorithms (Mahalanobis Typicalities, Multilayer Perceptron Artificial Neural Network, and MaxEnt) to create spatial distribution models for aspen seedlings and to define constraints. Each model performed with high accuracy and was incorporated into an ensemble model, which performed with the highest overall accuracy of all the models. Populus tremuloides seedling distribution is constrained primarily by proximity to unburned aspen forest and annual temperature ranges, and secondarily by light availability, summer precipitation, and fire severity. Based on model predictions and validation data, P. tremuloides seedling regeneration is viable throughout 54% of the post-fire landscape, 97% of which was previously conifer -dominated. Aspen are less susceptible to many climatically-sensitive disturbances (e.g. fire, beetle outbreak, wind disturbance), thus, aspen expansion represents an important adaptation to climate change. Continued aspen expansion into post-disturbance landscapes through sexual reproduction at the level suggested by these results would represent an important adaptation to climate change and would confer adaptive forest resilience by maintaining forest cover, but would also alter future disturbance regimes, biodiversity, and ecosystem services.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available