4.7 Article

Klotho expression in long bones regulates FGF23 production during renal failure

Journal

FASEB JOURNAL
Volume 31, Issue 5, Pages 2050-2064

Publisher

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.201601036R

Keywords

bone metabolism; chronic kidney disease; fibroblast growth factor 23

Funding

  1. U.S. Department of Defense [DOD-PR120411]

Ask authors/readers for more resources

Circulating levels of bone-derived fibroblast growth factor 23 (FGF23) increase early during acute and chronic kidney disease and are associated with adverse outcomes. Membrane-bound Klotho acts as a permissive coreceptor for FGF23, and its expression was recently found in osteoblasts/osteocytes. We hypothesized that Klotho in bone cells is part of an autocrine feedback loop that regulates FGF23 expression during renal failure. Thus, we induced renal failure in mice with targeted deletion of Klotho in long bones. Uremic wild-type (KLfl/fl ) and knockout (Prx1-Cre;KLfl/fl ) mice both responded with reduced body weight, kidney atrophy, hyperphosphatemia, and increased bone turnover. Importantly, long bones of Prx1-Cre;KLfl/fl mice but not their axial skeleton failed to increase FGF23 expression as observed in uremic KLfl/fl mice. Consequently, Prx1-Cre;KLfl/fl mice had significantly lower serum FGF23 and parathyroid hormone levels, and higher renal 1-a-hydroxylase expression, serum 1,25-dihydroxyvitamin D, and calcium levels than KLfl/fl mice. These results were confirmed in two independent models of renal failure, adenine diet induced and 5/6 nephrectomy. Moreover, FGF23-treated bone cells required Klotho to increase FGF23 mRNA and ERK phosphorylation. In summary, our novel findings show that Klotho in bone is crucial for inducing FGF23 production upon renal failure. We propose the presence of an autocrine feedback loop in which Klotho senses the need for FGF23.-Kaludjerovic, J., Komaba, H., Sato, T., Erben, R. G., Baron, R., Olauson, H., Larsson, T. E., Lanske, B. Klotho expression in long bones regulates FGF23 production during renal failure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available