4.5 Article

An experimental test of local adaptation among cytotypes within a polyploid complex

Journal

EVOLUTION
Volume 71, Issue 8, Pages 1960-1969

Publisher

WILEY
DOI: 10.1111/evo.13288

Keywords

Adaptation; cytogeography; cytotype; ecological niche; natural selection; plant ecology; reciprocal transplant

Funding

  1. California Native Plant Society
  2. Botanical Society of America
  3. UC Davis Center for Population Biology

Ask authors/readers for more resources

The geographic distributions of polyploids suggest they can have distinct and sometimes broader niches compared to diploids. However, relatively few field experiments have investigated whether range differences are associated with local adaptation or reflect other processes, such as dispersal limitation. In three years of transplants across the elevational ranges of five cytotypes in the Claytonia perfoliata complex, we found evidence for local adaptation. In at least one study year germination was higher within the natural range for each cytotype, and four of the five cytotypes attained larger biomass within their natural range. Fitness within and beyond range varied across years, with two instances of cytotypes showing higher fitness beyond the range, highlighting a potential role of temporal variability in cytotype differentiation. Polyploids as a group did not outperform diploids, but the cytotype with highest fitness across environments was a hexaploid reported to be invasive. Our results suggest that differences in geographic ranges within the C. perfoliata complex reflect local adaptation of cytotypes. Although we did not find a general polyploid advantage, our findings support the idea that occasional polyploid cytotypes exhibit high fitness relative to other cytotypes, and contribute to growing evidence supporting ecological differentiation of cytotypes within polyploid complexes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available