4.7 Article

Removal of polyvinylamine sulfonate anthrapyridone dye by application of heterogeneous electro-Fenton process

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 24, Issue 22, Pages 18309-18319

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-017-9468-5

Keywords

Heterogeneous electro-Fenton; Hydrogen peroxide; Carbon felt; Polyvinylamine sulfonate anthrapyridone; Pyrite, reusability

Funding

  1. Spanish Ministry of Economy and Competitiveness (MINECO)
  2. Xunta de Galicia
  3. ERDF [CTM2014-52471-R, GRC 2013/003]

Ask authors/readers for more resources

Diversity and rapidly multiplication of the pollutants incite as to improve the conventional treatments wastewater methods. One of the bottlenecks often faced is the presence into wastewater of organic pollutants with complex structures that requests the design of efficient processes. Thus, this work investigates the removal of polyvinylamine sulfonate anthrapyridone (PSA) dye which complex structure makes difficult its degradation by conventional technologies. For that, a heterogeneous oxidative process using pyrite as sustainable catalyst was designed. Initially, the performance of the system BBD-carbon felt as anode and cathode, respectively for the production of H2O2 was determined in comparison with system boron-doped diamond nickel foam. The carbon felt electrode provided the highest oxidant production, and it was selected for the treatment of the polymeric dye. Several oxidative processes were evaluated, and the best degradation levels were obtained by application of electro-Fenton-pyrite process. In addition, it was determined that dye removal followed a kinetic model of pseudo-first-order achieving the highest efficiency by operation at optimum dosage of pyrite 2 g/L and 200 mA of current intensity. Depending on the optimal experimental conditions, these values lead to a nearly complete mineralization (total organic carbon removal of 95%) after 6 h. Furthermore, the reusability of pyrite was evaluated, by removal of PSA in four cycles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Environmental Sciences

Peroxymonosulphate Activation by Basolite® F-300 for Escherichia coli Disinfection and Antipyrine Degradation

Antia Fdez-Sanroman, Marta Pazos, Angeles Sanroman

Summary: This study evaluated the removal of persistent emerging and dangerous pollutants (pharmaceuticals and pathogens) in synthetic wastewater using heterogeneous Advanced Oxidation Processes. The results showed that increasing the concentration of PMS and Basolite (R) F-300 improved the treatment efficiency.

INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH (2022)

Article Chemistry, Physical

Heterogeneous Advanced Oxidation Processes: Current Approaches for Wastewater Treatment

Gabriela Lama, Jessica Meijide, Angeles Sanroman, Marta Pazos

Summary: Water pollution is a serious global environmental issue, with emerging pollutants posing risks to human and animal health. Advanced oxidation processes have been proposed as an effective technology for removing these pollutants. Recent research focuses on the use of different types of heterogeneous catalysts to overcome limitations of conventional treatment methods.

CATALYSTS (2022)

Article Environmental Sciences

Disinfection through Advance Oxidation Processes: Optimization and Application on Real Wastewater Matrices

Pablo Blanco-Canella, Gabriela Lama, Ma Angeles Sanroman, Marta Pazos

Summary: Disinfection through the generation of hydroxyl and sulfate radicals was validated and optimized in this study. The optimized conditions were applied to real matrices from wastewater treatment plants, demonstrating the potential of these processes for disinfection.

TOXICS (2022)

Article Biotechnology & Applied Microbiology

Laccase multi-point covalent immobilization: characterization, kinetics, and its hydrophobicity applications

Abdelmageed M. M. Othman, Angeles Sanroman, Diego Moldes

Summary: In this study, it was found that the multi-point covalently immobilized laccase from Myceliophthora thermophila on the modified immobilized carrier (Immobead 150P) showed the best immobilization characteristics, retaining 95% of its initial activity after 10 cycles of operation at pH 3.0 and temperature 70 degrees C. The thermodynamic parameters of thermal inactivation demonstrated the positive impact of immobilization. The immobilized enzyme exhibited enhanced stability in alkaline conditions and the ability to provide hydrophobic properties to wood.

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY (2023)

Article Electrochemistry

Retrofitting of carbon-supported bimetallic Ni-based catalysts by phosphorization for hydrogen evolution reaction in acidic media

Aida M. Diez, Xiang Lyu, Marta Pazos, M. Angeles Sanroman, Geoff McCool, Oleg I. Lebedev, Yury Kolen'ko, Alexey Serov

Summary: This work introduces a convenient phosphorization protocol to convert commercial bimetallic Ni-Mo and Ni-Re electrocatalysts into their respective phosphides, enabling them to be stable under acidic conditions and suitable for water reduction in acidic electrolyte.

ELECTROCHIMICA ACTA (2023)

Article Environmental Sciences

Photocatalytic solid-phase degradation of polyethylene with fluoride-doped titania under low consumption ultraviolet radiation

Aida M. Diez, Marta Pazos, M. Angeles Sanroman, Helen Valencia Naranjo, Joachim Mayer, Yury Kolen'ko

Summary: This study successfully synthesized and characterized fluoride-doped-TiO2 and demonstrated its applicability in solid-phase photodegradation of polyethylene films for the first time. After three weeks of UV A radiation using a low consumption LED lamp, the polyethylene films containing only 2% of the photocatalyst experienced nearly 50% weight loss, surpassing previously reported data. The results suggest the potential for future production of self-photodegradable plastics for environmental and wastewater treatment applications.

JOURNAL OF ENVIRONMENTAL MANAGEMENT (2023)

Article Chemistry, Physical

Peroxymonosulfate Activation by Different Synthesized CuFe-MOFs: Application for Dye, Drugs, and Pathogen Removal

Antia Fdez-Sanroman, Barbara Lomba-Fernandez, Marta Pazos, Emilio Rosales, Angeles Sanroman

Summary: Three CuFe-MOFs with different structures were synthesized successfully by varying the ratio of solvents, salts, or temperature. CuFe(BDC-NH2)(D) and CuFe(BDC-NH2)(S) exhibited improved PMS activation for Rhodamine B removal, achieving a removal rate of around 92%. The best degradation system for a mixture of antibiotic and anti-inflammatory drugs was the photo-assisted activation of PMS using CuFe(BDC-NH2)(D) and CuFe(BDC-NH2)(S), resulting in complete degradation within 1 hour. CuFe(BDC-NH2)(R)/PMS showed higher antibacterial activity due to its higher copper content.

CATALYSTS (2023)

Article Chemistry, Physical

Application of Deep Eutectic Solvents (DES) for the Synthesis of Iron Heterogeneous Catalyst: Application to Sulfamethoxazole Degradation by Advanced Oxidation Processes

Anton Puga, Emilio Rosales, Marta Pazos, Maria Angeles Sanroman

Summary: The synthesis of an iron catalyst (Fe-DES) was proposed in this work, which was characterized physically and chemically. The Fe-DES was shown to be a multipurpose catalyst that can be applied in various processes for the removal of pharmaceuticals in wastewater.

CATALYSTS (2023)

Article Biotechnology & Applied Microbiology

Immobilization of esterase from Bacillus subtilis on Halloysite nanotubes and applications on dibutyl phthalate degradation

Esin Balci, Emilio Rosales, Marta Pazos, Aysun Sofuoglu, Maria Angeles Sanroman

Summary: This study investigated the degradation of dibutyl phthalate (DBP) using esterase and lipase enzymes from different microorganisms, and examined the feasibility of immobilizing the most effective enzyme on a clayey material. The results showed that esterase from Bacillus subtilis had the highest degradation efficiency and immoblization improved thermal and storage stability. Additionally, the immobilized enzyme composite maintained high catalytic activity after 7 continuous cycles.

ENVIRONMENTAL TECHNOLOGY & INNOVATION (2023)

Review Food Science & Technology

From Waste to Resource: Valorization of Lignocellulosic Agri-Food Residues through Engineered Hydrochar and Biochar for Environmental and Clean Energy Applications-A Comprehensive Review

Silvia Escudero-Curiel, Alba Giraldez, Marta Pazos, Angeles Sanroman

Summary: Agri-food residues and by-products are recognized as valuable products that can be used in other industries, such as environmental remediation. These materials, transformed into biochar and hydrochar through engineering techniques, have substantial potential as versatile adsorbents in wastewater treatment and promising alternatives in various environmental and energy-related applications. This sustainable approach provides cost-effective and satisfactory solutions, addressing environmental concerns and paving the way for a more eco-friendly and resource-efficient future.

FOODS (2023)

Article Biotechnology & Applied Microbiology

Recycling waste by manufacturing biomaterial for environmental engineering: Application to dye removal

Imane Akkari, Zahra Graba, Marta Pazos, Nacer Bezzi, Fatiha Atmani, Amar Manseri, Mohamed Mehdi Kaci

Summary: Due to the rapid growth of bio-waste, there are various difficulties in disposal and governance. Therefore, recycling and repurposing bio-waste for environmental purposes have gained more attention. In this study, a novel activated hydrochar (AHPP) was synthesized from pomegranate peels using hydrothermal carbonization (HTC) followed by phosphoric acid activation. The characteristics of AHPP were determined using various techniques, and its potential for adsorbing Basic Red 46 (BR46) dye was assessed. The results showed that AHPP can effectively adsorb BR46, and it could be reused multiple times.

BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY (2023)

Article Environmental Sciences

Nanostructured copper-organic frameworks for the generation of sulphate radicals: application in wastewater disinfection

Alba Giraldez, Antia Fdez-Sanroman, Daniel Terron, M. Angeles Sanroman, Marta Pazos

Summary: In recent years, the issue of pathogens in the environment has gained widespread concern. New research has been conducted on removing pathogens and persistent pollutants from water. The study evaluated the effectiveness of the nanostructure copper-organic framework, HKUST-1, as a catalyst for eliminating Escherichia coli and generating sulphate radicals through peroxymonosulphate (PMS) activation. The disinfection process was optimized and achieved complete elimination of Escherichia coli growth after 30 minutes using a concentration of 60.5 mg/L HKUST-1 and 0.1 mM PMS. A novel development involving encapsulating HKUST-1 on polyacrylonitrile was proposed to overcome operational limitations and enable continuous treatment in a flow disinfection process.

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH (2023)

Article Chemistry, Physical

Sustainable regeneration of a honeycomb carbon aerogel used as a high-capacity adsorbent for Fluoxetine removal

Silvia Escudero-Curiel, Marta Pazos, Angeles Sanroman

Summary: Pharmaceuticals and personal care products (PPCPs) pose harm to ecosystems and human health, and regulating discharges at wastewater treatment plants (WWTPs) has become a priority. This study evaluated the removal of Fluoxetine (FLX) through adsorption and regeneration cycles using NQ40 honeycomb 3D carbon aerogel as a high-capacity adsorbent. The regeneration process using Fenton and Fenton-like methods demonstrated the effectiveness of hydrogen peroxide in removing high concentrations of FLX.

JOURNAL OF MOLECULAR LIQUIDS (2022)

No Data Available