4.7 Article

Diallyl trisulfide (DATS) suppresses benzene-induced cytopenia by modulating haematopoietic cell apoptosis

Journal

ENVIRONMENTAL POLLUTION
Volume 231, Issue -, Pages 301-310

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2017.07.069

Keywords

Diallyl trisulfide; Benzene poisoning; Oxidative stress; Cytopenia

Funding

  1. National Natural Science Foundation of China [81373044]

Ask authors/readers for more resources

Benzene is a well-known occupational and environmental toxicant associated with cytopenia, which is characterized by a disorder in the peripheral blood cell counts. However, no effective preventive strategy has been developed yet to tackle the exposure to benzene in daily life. The aim of this study was to evaluate the protective effects of diallyl trisulfide (DATS) on benzene-induced haematopoietic damage and to reveal its potential mechanisms of action. In our study, male Sprague-Dawley rats were divided into six groups. Rats were administered with benzene (13 g/kg BW by gavage) to establish the benzene poisoning model, while the DATS treatment groups were treated with benzene plus DATS (15 mg/kg, 30 mg/kg, 45 mg/kg, respectively, by gavage) for 28 days. Our results demonstrated that the counts of peripheral blood WBC and RBC decreased to 31.0% and 79.2%, respectively, in the benzene poisoning model group compared to the control. However, blood cell counts were restored by DATS treatment (30 mg/kg, 45 mg/kg). The apoptosis rates of peripheral blood mononuclear cells (PBMCs) and bone marrow cells (BMCs) were increased to 274% and 284%, respectively, following benzene exposure. Furthermore, expression levels of Bcl-2, PI3K and p-Akt were downregulated and those of Bax were upregulated in both cell types. Moreover, the oxidative parameters (oxygen species, malonaldehyde) were significantly increased, while the non-enzymatic GSH/GSSG ratios and the activities of enzymatic antioxidants (superoxide dismutase, glutathione peroxidase and catalase) were decreased. Interestingly, DATS treatment can restore the WBC number by 267.1% and 304.8% while RBC number by 108.6% and 117.7% in 30,45 mg/k DATS treated groups. In summary, we demonstrated that benzene-induced cytopenia was related to the apoptosis of PBMCs and BMCs, and DATS treatment could prevent benzene induced cytopenia by suppressing oxidative stress-mediated cell apoptosis via the PI3K/Akt pathway. (C) 2017 Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available