4.7 Article

The uptake of mixed PAHs and PBDEs in wastewater by mangrove plants under different tidal flushing regimes

Journal

ENVIRONMENTAL POLLUTION
Volume 231, Issue -, Pages 104-114

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2017.07.085

Keywords

E. agallocha; Fe plaque; Immobilization; K. obovata; Plant uptake

Funding

  1. City University of Hong Kong [7004709]
  2. National Science Foundation from Mainland China [41576086]

Ask authors/readers for more resources

Wastewater often contains mixed toxic pollutants, and the contribution of plant uptake in constructed wetland treatment systems is affected by environmental conditions, particularly tidal flushing. In this study, the uptake of wastewater-borne pollutants, including a mixture of polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers (PBDEs) congeners, by two mangrove plant species, namely Excoecaria agallocha L and Kandelia obovata Sheue, Liu & Yong, under different tidal flushing regimes was investigated. Results showed that Fe plaque formed on root surfaces could immobilize wastewater-borne PAHs and PBDEs. At the end of 8-month wastewater treatment, most of the pollutants removed by plants ended up in Fe plaque, with 0.12-20.83% of total PAHs and 0.78-24.76% of total PBDEs added to the microcosm retained in Fe plaque. On the contrary, the percentages of PAHs and PBDEs taken up by plant tissues were relatively small, ranging from not detected to 0.09% and from 0.01 to 2.00%, respectively. More uptake of Fe plaque-immobilized PAHs and PBDEs was found in K. obovata than in E. agallocha, leading to more plant damages in the former species due to its weaker root outer layers. While E. agallocha with stronger root protective outer layer was able to uptake more PAHs and PBDEs from wastewater but immobilize in Fe plaque than that of K. obovata. In both plant species, tidal flushing regimes significantly affected the immobilization of PAHs and PBDEs in Fe plaque, and more frequent tidal flushing led to higher percentages of immobilization. This is the first study demonstrating that E. agallocha was a more suitable mangrove plant species to remove wastewater-borne PAHs and PBDEs than K. obovata, and the significance of tidal flushing on performance of constructed mangrove wetlands. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available