4.6 Article

Quantification and characterization of the dynamics of spring and stream water systems in the Berchtesgaden Alps with a long-term stable isotope dataset

Journal

ENVIRONMENTAL EARTH SCIENCES
Volume 76, Issue 22, Pages -

Publisher

SPRINGER
DOI: 10.1007/s12665-017-7107-6

Keywords

Stable isotope hydrology; Hydrogeology; Hydrology; Mean transit times

Funding

  1. Bayerisches Staatsministerium fur Umwelt und Verbraucherschutz (StMUV) [TKP01KPB-66747]

Ask authors/readers for more resources

The understanding of alpine groundwater dynamics and the interactions with surface stream water is crucial for water resources research and management in mountain regions. In order to characterize local spring and stream water systems, samples at 8 springs, 5 stream gauges and bulk samples of precipitation at 4 sites were regularly collected between January 2012 and January 2016 in the Berchtesgaden Alps for stable water isotope analysis. The sampled hydro-systems are characterized by very different dynamics of the stable isotope signatures. To quantify those differences, we analyzed the stable isotope time series and calculated mean transit times (MTT) and young water fractions (YWF) of the sampled systems. Based on the data analysis, two groups of spring systems could be identified: one group with relatively short MTT (and high YWF) and another group with long MTT (and low YWF). The MTT and the YWF of the sampled streams were intermediate, respectively. The reaction of the sampled spring and stream systems to precipitation input was studied by lag time analysis. The average lag times revealed the influence of snow and ice melt for the hydrology in the study region. It was not possible to determine the recharge elevation of the spring and stream systems due to a lack of altitude effect in the precipitation data. For two catchments, the influence of the spring water stable isotopic composition on the streamflow was shown, highlighting the importance of the spring water for the river network in the study area.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available