4.5 Article Proceedings Paper

Assessing the optimal conditions for surface-mediated disinfection of Influenza A virus solutions

Journal

ENVIRONMENTAL CHEMISTRY
Volume 14, Issue 5, Pages 319-326

Publisher

CSIRO PUBLISHING
DOI: 10.1071/EN16213

Keywords

-

Funding

  1. Spanish Ministry of Economy and Competitiveness (MINECO) [FIS 2013-41144P]

Ask authors/readers for more resources

The abundance of pathogenic microorganisms in the environment and the ease of their transmission through several paths is a critical issue in many daily human activities. Within the different transmission paths, contact with contaminated surfaces provides a chance for the development of surfaces with special characteristics that are able to reduce the spread of microorganisms through their deactivation by contact. The development of 'active' surfaces with antiviral properties requires the understanding of the molecular interaction mechanisms between functionalised surfaces and lipid-enveloped entities. By means of a study based on experimental and computational methods we have assessed that surfaces that are simultaneously hydrophobic and oleophilic are more efficient for disinfecting aqueous virus solutions. The combination of these features causes the disruption of the viral lipid envelope upon contacting the surface, and as a consequence the virus' destruction and deactivation. Our results suggest new and more effective design strategies for functionalised surfaces that may be of interest for applications in sensitive environments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available